Abstract

The optimum refractive-index distribution of the high-bandwidth graded-index polymer optical fiber (POF) was clarified for the first time by consideration of both modal and material dispersions. The ultimate bandwidth achieved by the POF is investigated by a quantitative estimation of the material dispersion as well as the modal dispersion. The results indicate that even if the refractive-index distribution is tightly controlled, the bandwidth of the graded-index POF is dominated by the material dispersion when the required bit rate becomes larger than a few gigabits per second. It is also confirmed that the material dispersion strongly depends on the matrix polymer and that the use of a fluorinated polymer whose material dispersion [−0.078 ns/(nm km)] is lower than that of poly(methyl methacrylate) [−0.305 ns/(nm km)] allows for a 10-Gb/s signal transmission.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ishigure, E. Nihei, Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33, 4261–4266 (1994).
    [CrossRef] [PubMed]
  2. Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” IEEE J. Lightwave Technol. 13, 1475–1489 (1995).
    [CrossRef]
  3. T. Ishigure, E. Nihei, S. Yamazaki, K. Kobayashi, Y. Koike, “2.5 Gb/s 100 m data transmission using graded index polymer optical fiber and high speed laser diode at 650-nm wavelength,” Electron. Lett. 31, 467–468 (1995).
    [CrossRef]
  4. Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
    [CrossRef]
  5. Y. Koike, S. Matsuoka, H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25, 4809–4815 (1992).
    [CrossRef]
  6. J. W. Fleming, “Material and mode dispersion in GeO2 · B2O3 ·· SiO2 glasses,” J. Am. Ceram. Soc. 59, 503–507 (1976).
    [CrossRef]
  7. M. Horiguch, Y. Ohmori, T. Miya, “Evaluation of material dispersion using a nanosecond optical radiator,” Appl. Opt. 18, 2223–2228 (1979).
    [CrossRef]
  8. M. J. Heckert, “Development of chromatic dispersion measurement on multimode fiber using the relative time of flight measurement technique,” IEEE Photon. Technol. Lett. 4, 198–200 (1992).
    [CrossRef]
  9. R. Olshansky, D. B. Keck, “Pulse broadening in graded-index optical fibers,” Appl. Opt. 15, 483–491 (1976).
    [CrossRef] [PubMed]
  10. S. D. Personick, “Receiver design for digital fiber optic communication systems, I,” Bell Syst. Technol. J. 52, 843–874 (1973).
  11. S. D. Personick, “Receiver design for digital fiber optic communication systems, II,” B.S.T.J. 52, 875–886 (1973).
  12. T. Ishigure, E. Nihei, Y. Koike, C. E. Forbes, L. LaNieve, R. Straff, H. A. Deckers, “High-bandwidth graded-index polymer optical fiber for near infrared use,” IEEE Photon. Technol. Lett. 7, 403–405 (1995).
    [CrossRef]
  13. G. Garin, “High performance fiber optic links using low cost plastic fiber,” presented at the Plastic Optical Fibers and Applications Conference, Paris, France, 22–23 June 1992.
  14. K. Fukuda, T. Iwakami, “High-speed and long-distance POF transmission systems based on LED transmitters,” presented at the Plastic Optical Fibers and Applications Conference, The Hague, The Netherlands, 28–29 June 1993.
  15. A. Nakamura, N. Horie, Y. Kitagawa, T. Tanaka, J. Takagi, T. Yamashita, K. Veda, H. Naito, “Highly efficient power coupling between a LED and a plastic optical fiber,” presented at the Plastic Optical Fibers and Applications Conference, Yokohama, Japan, 26–28 October 1994.

1995 (3)

Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” IEEE J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

T. Ishigure, E. Nihei, S. Yamazaki, K. Kobayashi, Y. Koike, “2.5 Gb/s 100 m data transmission using graded index polymer optical fiber and high speed laser diode at 650-nm wavelength,” Electron. Lett. 31, 467–468 (1995).
[CrossRef]

T. Ishigure, E. Nihei, Y. Koike, C. E. Forbes, L. LaNieve, R. Straff, H. A. Deckers, “High-bandwidth graded-index polymer optical fiber for near infrared use,” IEEE Photon. Technol. Lett. 7, 403–405 (1995).
[CrossRef]

1994 (1)

1992 (2)

Y. Koike, S. Matsuoka, H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25, 4809–4815 (1992).
[CrossRef]

M. J. Heckert, “Development of chromatic dispersion measurement on multimode fiber using the relative time of flight measurement technique,” IEEE Photon. Technol. Lett. 4, 198–200 (1992).
[CrossRef]

1989 (1)

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

1979 (1)

1976 (2)

J. W. Fleming, “Material and mode dispersion in GeO2 · B2O3 ·· SiO2 glasses,” J. Am. Ceram. Soc. 59, 503–507 (1976).
[CrossRef]

R. Olshansky, D. B. Keck, “Pulse broadening in graded-index optical fibers,” Appl. Opt. 15, 483–491 (1976).
[CrossRef] [PubMed]

1973 (2)

S. D. Personick, “Receiver design for digital fiber optic communication systems, I,” Bell Syst. Technol. J. 52, 843–874 (1973).

S. D. Personick, “Receiver design for digital fiber optic communication systems, II,” B.S.T.J. 52, 875–886 (1973).

Bair, H. E.

Y. Koike, S. Matsuoka, H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25, 4809–4815 (1992).
[CrossRef]

Deckers, H. A.

T. Ishigure, E. Nihei, Y. Koike, C. E. Forbes, L. LaNieve, R. Straff, H. A. Deckers, “High-bandwidth graded-index polymer optical fiber for near infrared use,” IEEE Photon. Technol. Lett. 7, 403–405 (1995).
[CrossRef]

Fleming, J. W.

J. W. Fleming, “Material and mode dispersion in GeO2 · B2O3 ·· SiO2 glasses,” J. Am. Ceram. Soc. 59, 503–507 (1976).
[CrossRef]

Forbes, C. E.

T. Ishigure, E. Nihei, Y. Koike, C. E. Forbes, L. LaNieve, R. Straff, H. A. Deckers, “High-bandwidth graded-index polymer optical fiber for near infrared use,” IEEE Photon. Technol. Lett. 7, 403–405 (1995).
[CrossRef]

Fukuda, K.

K. Fukuda, T. Iwakami, “High-speed and long-distance POF transmission systems based on LED transmitters,” presented at the Plastic Optical Fibers and Applications Conference, The Hague, The Netherlands, 28–29 June 1993.

Garin, G.

G. Garin, “High performance fiber optic links using low cost plastic fiber,” presented at the Plastic Optical Fibers and Applications Conference, Paris, France, 22–23 June 1992.

Heckert, M. J.

M. J. Heckert, “Development of chromatic dispersion measurement on multimode fiber using the relative time of flight measurement technique,” IEEE Photon. Technol. Lett. 4, 198–200 (1992).
[CrossRef]

Horie, N.

A. Nakamura, N. Horie, Y. Kitagawa, T. Tanaka, J. Takagi, T. Yamashita, K. Veda, H. Naito, “Highly efficient power coupling between a LED and a plastic optical fiber,” presented at the Plastic Optical Fibers and Applications Conference, Yokohama, Japan, 26–28 October 1994.

Horiguch, M.

Ishigure, T.

Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” IEEE J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

T. Ishigure, E. Nihei, S. Yamazaki, K. Kobayashi, Y. Koike, “2.5 Gb/s 100 m data transmission using graded index polymer optical fiber and high speed laser diode at 650-nm wavelength,” Electron. Lett. 31, 467–468 (1995).
[CrossRef]

T. Ishigure, E. Nihei, Y. Koike, C. E. Forbes, L. LaNieve, R. Straff, H. A. Deckers, “High-bandwidth graded-index polymer optical fiber for near infrared use,” IEEE Photon. Technol. Lett. 7, 403–405 (1995).
[CrossRef]

T. Ishigure, E. Nihei, Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33, 4261–4266 (1994).
[CrossRef] [PubMed]

Iwakami, T.

K. Fukuda, T. Iwakami, “High-speed and long-distance POF transmission systems based on LED transmitters,” presented at the Plastic Optical Fibers and Applications Conference, The Hague, The Netherlands, 28–29 June 1993.

Keck, D. B.

Kitagawa, Y.

A. Nakamura, N. Horie, Y. Kitagawa, T. Tanaka, J. Takagi, T. Yamashita, K. Veda, H. Naito, “Highly efficient power coupling between a LED and a plastic optical fiber,” presented at the Plastic Optical Fibers and Applications Conference, Yokohama, Japan, 26–28 October 1994.

Kobayashi, K.

T. Ishigure, E. Nihei, S. Yamazaki, K. Kobayashi, Y. Koike, “2.5 Gb/s 100 m data transmission using graded index polymer optical fiber and high speed laser diode at 650-nm wavelength,” Electron. Lett. 31, 467–468 (1995).
[CrossRef]

Koike, Y.

T. Ishigure, E. Nihei, S. Yamazaki, K. Kobayashi, Y. Koike, “2.5 Gb/s 100 m data transmission using graded index polymer optical fiber and high speed laser diode at 650-nm wavelength,” Electron. Lett. 31, 467–468 (1995).
[CrossRef]

Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” IEEE J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

T. Ishigure, E. Nihei, Y. Koike, C. E. Forbes, L. LaNieve, R. Straff, H. A. Deckers, “High-bandwidth graded-index polymer optical fiber for near infrared use,” IEEE Photon. Technol. Lett. 7, 403–405 (1995).
[CrossRef]

T. Ishigure, E. Nihei, Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33, 4261–4266 (1994).
[CrossRef] [PubMed]

Y. Koike, S. Matsuoka, H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25, 4809–4815 (1992).
[CrossRef]

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

LaNieve, L.

T. Ishigure, E. Nihei, Y. Koike, C. E. Forbes, L. LaNieve, R. Straff, H. A. Deckers, “High-bandwidth graded-index polymer optical fiber for near infrared use,” IEEE Photon. Technol. Lett. 7, 403–405 (1995).
[CrossRef]

Matsuoka, S.

Y. Koike, S. Matsuoka, H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25, 4809–4815 (1992).
[CrossRef]

Miya, T.

Naito, H.

A. Nakamura, N. Horie, Y. Kitagawa, T. Tanaka, J. Takagi, T. Yamashita, K. Veda, H. Naito, “Highly efficient power coupling between a LED and a plastic optical fiber,” presented at the Plastic Optical Fibers and Applications Conference, Yokohama, Japan, 26–28 October 1994.

Nakamura, A.

A. Nakamura, N. Horie, Y. Kitagawa, T. Tanaka, J. Takagi, T. Yamashita, K. Veda, H. Naito, “Highly efficient power coupling between a LED and a plastic optical fiber,” presented at the Plastic Optical Fibers and Applications Conference, Yokohama, Japan, 26–28 October 1994.

Nihei, E.

T. Ishigure, E. Nihei, Y. Koike, C. E. Forbes, L. LaNieve, R. Straff, H. A. Deckers, “High-bandwidth graded-index polymer optical fiber for near infrared use,” IEEE Photon. Technol. Lett. 7, 403–405 (1995).
[CrossRef]

T. Ishigure, E. Nihei, S. Yamazaki, K. Kobayashi, Y. Koike, “2.5 Gb/s 100 m data transmission using graded index polymer optical fiber and high speed laser diode at 650-nm wavelength,” Electron. Lett. 31, 467–468 (1995).
[CrossRef]

Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” IEEE J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

T. Ishigure, E. Nihei, Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33, 4261–4266 (1994).
[CrossRef] [PubMed]

Ohmori, Y.

Ohtsuka, Y.

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

Olshansky, R.

Personick, S. D.

S. D. Personick, “Receiver design for digital fiber optic communication systems, I,” Bell Syst. Technol. J. 52, 843–874 (1973).

S. D. Personick, “Receiver design for digital fiber optic communication systems, II,” B.S.T.J. 52, 875–886 (1973).

Straff, R.

T. Ishigure, E. Nihei, Y. Koike, C. E. Forbes, L. LaNieve, R. Straff, H. A. Deckers, “High-bandwidth graded-index polymer optical fiber for near infrared use,” IEEE Photon. Technol. Lett. 7, 403–405 (1995).
[CrossRef]

Takagi, J.

A. Nakamura, N. Horie, Y. Kitagawa, T. Tanaka, J. Takagi, T. Yamashita, K. Veda, H. Naito, “Highly efficient power coupling between a LED and a plastic optical fiber,” presented at the Plastic Optical Fibers and Applications Conference, Yokohama, Japan, 26–28 October 1994.

Tanaka, T.

A. Nakamura, N. Horie, Y. Kitagawa, T. Tanaka, J. Takagi, T. Yamashita, K. Veda, H. Naito, “Highly efficient power coupling between a LED and a plastic optical fiber,” presented at the Plastic Optical Fibers and Applications Conference, Yokohama, Japan, 26–28 October 1994.

Tanio, N.

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

Veda, K.

A. Nakamura, N. Horie, Y. Kitagawa, T. Tanaka, J. Takagi, T. Yamashita, K. Veda, H. Naito, “Highly efficient power coupling between a LED and a plastic optical fiber,” presented at the Plastic Optical Fibers and Applications Conference, Yokohama, Japan, 26–28 October 1994.

Yamashita, T.

A. Nakamura, N. Horie, Y. Kitagawa, T. Tanaka, J. Takagi, T. Yamashita, K. Veda, H. Naito, “Highly efficient power coupling between a LED and a plastic optical fiber,” presented at the Plastic Optical Fibers and Applications Conference, Yokohama, Japan, 26–28 October 1994.

Yamazaki, S.

T. Ishigure, E. Nihei, S. Yamazaki, K. Kobayashi, Y. Koike, “2.5 Gb/s 100 m data transmission using graded index polymer optical fiber and high speed laser diode at 650-nm wavelength,” Electron. Lett. 31, 467–468 (1995).
[CrossRef]

Appl. Opt. (3)

B.S.T.J. (1)

S. D. Personick, “Receiver design for digital fiber optic communication systems, II,” B.S.T.J. 52, 875–886 (1973).

Bell Syst. Technol. J. (1)

S. D. Personick, “Receiver design for digital fiber optic communication systems, I,” Bell Syst. Technol. J. 52, 843–874 (1973).

Electron. Lett. (1)

T. Ishigure, E. Nihei, S. Yamazaki, K. Kobayashi, Y. Koike, “2.5 Gb/s 100 m data transmission using graded index polymer optical fiber and high speed laser diode at 650-nm wavelength,” Electron. Lett. 31, 467–468 (1995).
[CrossRef]

IEEE J. Lightwave Technol. (1)

Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” IEEE J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. J. Heckert, “Development of chromatic dispersion measurement on multimode fiber using the relative time of flight measurement technique,” IEEE Photon. Technol. Lett. 4, 198–200 (1992).
[CrossRef]

T. Ishigure, E. Nihei, Y. Koike, C. E. Forbes, L. LaNieve, R. Straff, H. A. Deckers, “High-bandwidth graded-index polymer optical fiber for near infrared use,” IEEE Photon. Technol. Lett. 7, 403–405 (1995).
[CrossRef]

J. Am. Ceram. Soc. (1)

J. W. Fleming, “Material and mode dispersion in GeO2 · B2O3 ·· SiO2 glasses,” J. Am. Ceram. Soc. 59, 503–507 (1976).
[CrossRef]

Macromolecules (2)

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

Y. Koike, S. Matsuoka, H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25, 4809–4815 (1992).
[CrossRef]

Other (3)

G. Garin, “High performance fiber optic links using low cost plastic fiber,” presented at the Plastic Optical Fibers and Applications Conference, Paris, France, 22–23 June 1992.

K. Fukuda, T. Iwakami, “High-speed and long-distance POF transmission systems based on LED transmitters,” presented at the Plastic Optical Fibers and Applications Conference, The Hague, The Netherlands, 28–29 June 1993.

A. Nakamura, N. Horie, Y. Kitagawa, T. Tanaka, J. Takagi, T. Yamashita, K. Veda, H. Naito, “Highly efficient power coupling between a LED and a plastic optical fiber,” presented at the Plastic Optical Fibers and Applications Conference, Yokohama, Japan, 26–28 October 1994.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Refractive-index dependence of the polymers on wavelength: ■, BEN-doped PMMA; ●, PMMA; ◆, DBP-doped PHFIP 2-FA; ▲, PHFIP 2-FA.

Fig. 2
Fig. 2

Comparison of the material dispersion among PMMA, partially fluorinated polymer, and silica: (A), BEN-doped PMMA; (B), PMMA; (C), silica; (D), DBP-doped PHFIP 2-FA; (E), PHFIP 2-FA.

Fig. 3
Fig. 3

Pulse width (σtotal) versus index exponent of PMMA-based GI POF, assuming equal power in all modes and a light source having a rms spectral width of 2 nm: (A), only modal dispersion is considered; (B), both modal and material dispersions at a 780-nm wavelength are considered; (C), both modal and material dispersions at a 650-nm wavelength are considered.

Fig. 4
Fig. 4

Pulse width (σtotal) versus index exponent of PHFIP 2-FA-based GI POF, assuming equal power in all modes and a light source having a rms spectral width of 2 nm: (A)–(C) are the same as in Fig. 3.

Fig. 5
Fig. 5

Relation between the bit rate and index exponent of 100-m-length GI POF: (A), PHFIP 2-FA-based GI POF at a 780-nm wavelength; (B), PHFIP 2-FA-based GI POF at a 650-nm wavelength; (C), PMMA-based GI POF at a 780-nm wavelength; (D), PMMA-based GI POF at a 650-nm wavelength.

Fig. 6
Fig. 6

Total attenuation spectra of the GI POF: (A), PMMA based; (B), PHFIP 2-FA based.

Fig. 7
Fig. 7

Relation between the bit rate in the 100-m PMMA-based GI POF link and the index exponent at a 650-nm wavelength when the light source has a finite spectral width as follows: (A), 0 nm; (B), 1 nm; (C), 2 nm; (D), 5 nm; (E), 20 nm.

Fig. 8
Fig. 8

Relationship between the bit rate in the 100-m PHFIP 2-FA-based GI POF link and the index exponent at a 780-nm wavelength when the light source has a finite spectral width as follows: (A), 0 nm; (B), 1 nm; (C), 2 nm; (D), 5 nm; (E), 20 nm.

Tables (1)

Tables Icon

Table 1 Coefficients of the Sellmeier Equation

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n 2 - 1 = i = 1 3 A i λ 2 λ 2 - l i 2 ,
D mat = - ( λ δ λ c ) ( d 2 n d λ 2 ) L ,
n ( r ) = n 1 [ 1 - ( r a ) α Δ ] ,
Δ = n 1 2 - n 2 2 2 n 1 2 n 1 - n 2 n 1 .
σ intermodal = L N 1 Δ 2 c α α + 1 ( α + 2 3 α + 2 ) 1 / 2 × [ C 1 2 + 4 C 1 C 2 Δ ( α + 1 ) 2 α + 1 + 4 Δ 2 C 2 2 ( 2 α + 2 ) 2 ( 5 α + 2 ) ( 3 α + 2 ) ] 1 / 2 ,
σ intramodal = σ s L λ [ ( - λ 2 d 2 n 1 d λ 2 ) 2 - 2 λ 2 d 2 n 1 d λ 2 ( N 1 Δ ) × C 1 ( 2 α 2 α + 2 ) + ( N 1 Δ ) 2 ( α - 2 - α + 2 ) 2 × 2 α 3 α + 2 ] 1 / 2 ,
C 1 = α - 2 - α + 2 , C 2 = 3 α - 2 - 2 2 ( α + 2 ) , = - 2 n 1 N 1 λ Δ d Δ d λ , N 1 = n 1 - λ d n 1 d λ .
σ total = [ ( σ intermodal ) 2 + ( σ intramodal ) 2 ] 1 / 2 .
B p = 1 4 σ total .

Metrics