Abstract

An external-cavity diode laser is used to seed a pulsed Ti:sapphire laser from 839 to 860 nm. Because this wavelength range is off the gain peak of Ti:sapphire, a bandpass filter is used in the cavity to permit seeded operation. We describe a tunable, wide-field-of-view birefringent filter especially suited for use in seeded lasers. Measurements of the ratio of unseeded to seeded output as a function of seed power are also presented and demonstrate an approximately reciprocal dependence on the seed power.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  2. Y. K. Park, G. Giuliani, R. L. Byer, “Stable single-axial-mode operation of an unstable-resonator Nd:YAG oscillator by injection locking,” Opt. Lett. 5, 96–98 (1980); Y. S. Liu, “Generation of high-power nanosecond pulses from a Q-switched Nd:YAG oscillator using intracavity-injection technique,” Opt. Lett. 4, 372–374 (1979).
    [CrossRef] [PubMed]
  3. C. R. Prasad, H. S. Lee, T. R. Glesne, B. Monosmith, G. K. Schwemmer, “Theoretical and experimental analysis of injection seeding a Q-switched alexandrite laser,” in Advanced Solid State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings (Optical Society of America, Washington, D.C., 1991), pp. 10–13.
  4. J.-L. LaChambre, P. Lavigne, G. Otis, M. Noel, “Injection locking and mode selection in TEA-CO2 laser oscillators,” IEEE J. Quantum Electron. QE-12, 756–764 (1976).
    [CrossRef]
  5. I. J. Bigio, M. Slatkine, “Injection-locking unstable resonator excimer lasers,” IEEE J. Quantum Electron. QE-19, 1426–1436 (1983).
    [CrossRef]
  6. C. E. Hamilton, “Single-frequency, injection-seeded Ti:sapphire ring laser with high temporal precision,” Opt. Lett. 17, 728–730 (1992).
    [CrossRef] [PubMed]
  7. T. D. Raymond, A. V. Smith, “Injection-seeded titanium-doped-sapphire laser,” Opt. Lett. 16, 33–35 (1991).
    [CrossRef] [PubMed]
  8. P. Brockman, C. H. Bair, J. C. Barnes, R. V. Hess, E. V. Browell, “Pulsed injection control of a titanium-doped sapphire laser,” Opt. Lett. 11, 712–714 (1986).
    [CrossRef] [PubMed]
  9. C. H. Bair, P. Brockman, R. V. Hess, E. A. Modlin, “Demonstration of frequency control and cw diode laser injection control of a titanium-doped sapphire ring laser with no internal optical elements,” IEEE J. Quantum Electron. 24, 1045–1048 (1988).
    [CrossRef]
  10. G. A. Rines, P. F. Moulton, “Performance of gain-switched Ti:Al2O3 unstable-resonator lasers,” Opt. Lett. 15, 434–436 (1990).
    [CrossRef] [PubMed]
  11. I. J. Hodgkinson, J. I. Vukusic, “Birefringent tuning filters without secondary peaks,” Opt. Commun. 24, 133–134 (1978); “Birefringent filters for tuning flashlamp-pumped dye lasers: simplified theory and design,” Appl. Opt. 17, 1944–1948 (1978).
    [CrossRef] [PubMed]
  12. W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, New York, 1988); A. L. Bloom, “Modes of a laser resonator containing tilted birefringent plates,” J. Opt. Soc. Am. 64, 447–452 (1974); D. R. Preuss, J. L. Gole, “Three-state birefringent filter tuning smoothly over the visible region: theoretical treatment and experimental design,” Appl. Opt. 19, 702–710 (1980).
    [CrossRef] [PubMed]
  13. C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
    [CrossRef]
  14. M. G. Littman, H. J. Metcalf, “Spectrally narrow pulsed dye laser without beam expanders,” Appl. Opt. 17, 2224–2227 (1978); M. G. Littman, “Single-mode operation of grazing-incidence pulsed dye laser,” Opt. Lett. 3, 138–140 (1978); K. Liu, M. G. Littman, “Novel geometry for single-mode scanning of tunable lasers,” Opt. Lett. 6, 117–119 (1981); M. G. Littman, “Single-mode pulsed tunable dye laser,” Appl. Opt. 23, 4465–4468 (1984); P. McNicholl, H. J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings,” Appl. Opt. 24, 2757–2761 (1985).
    [CrossRef] [PubMed]
  15. K. C. Harvey, C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 910–912 (1991).
    [CrossRef] [PubMed]
  16. A. Kasapi, G. Y. Yin, M. Jain, “Electromagnetically induced transparency: population dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
    [CrossRef] [PubMed]

1995 (1)

A. Kasapi, G. Y. Yin, M. Jain, “Electromagnetically induced transparency: population dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef] [PubMed]

1992 (1)

1991 (3)

1990 (1)

1988 (1)

C. H. Bair, P. Brockman, R. V. Hess, E. A. Modlin, “Demonstration of frequency control and cw diode laser injection control of a titanium-doped sapphire ring laser with no internal optical elements,” IEEE J. Quantum Electron. 24, 1045–1048 (1988).
[CrossRef]

1986 (1)

1983 (1)

I. J. Bigio, M. Slatkine, “Injection-locking unstable resonator excimer lasers,” IEEE J. Quantum Electron. QE-19, 1426–1436 (1983).
[CrossRef]

1980 (1)

1978 (2)

1976 (1)

J.-L. LaChambre, P. Lavigne, G. Otis, M. Noel, “Injection locking and mode selection in TEA-CO2 laser oscillators,” IEEE J. Quantum Electron. QE-12, 756–764 (1976).
[CrossRef]

Bair, C. H.

C. H. Bair, P. Brockman, R. V. Hess, E. A. Modlin, “Demonstration of frequency control and cw diode laser injection control of a titanium-doped sapphire ring laser with no internal optical elements,” IEEE J. Quantum Electron. 24, 1045–1048 (1988).
[CrossRef]

P. Brockman, C. H. Bair, J. C. Barnes, R. V. Hess, E. V. Browell, “Pulsed injection control of a titanium-doped sapphire laser,” Opt. Lett. 11, 712–714 (1986).
[CrossRef] [PubMed]

Barnes, J. C.

Bigio, I. J.

I. J. Bigio, M. Slatkine, “Injection-locking unstable resonator excimer lasers,” IEEE J. Quantum Electron. QE-19, 1426–1436 (1983).
[CrossRef]

Brockman, P.

C. H. Bair, P. Brockman, R. V. Hess, E. A. Modlin, “Demonstration of frequency control and cw diode laser injection control of a titanium-doped sapphire ring laser with no internal optical elements,” IEEE J. Quantum Electron. 24, 1045–1048 (1988).
[CrossRef]

P. Brockman, C. H. Bair, J. C. Barnes, R. V. Hess, E. V. Browell, “Pulsed injection control of a titanium-doped sapphire laser,” Opt. Lett. 11, 712–714 (1986).
[CrossRef] [PubMed]

Browell, E. V.

Byer, R. L.

Giuliani, G.

Glesne, T. R.

C. R. Prasad, H. S. Lee, T. R. Glesne, B. Monosmith, G. K. Schwemmer, “Theoretical and experimental analysis of injection seeding a Q-switched alexandrite laser,” in Advanced Solid State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings (Optical Society of America, Washington, D.C., 1991), pp. 10–13.

Hamilton, C. E.

Harvey, K. C.

Hess, R. V.

C. H. Bair, P. Brockman, R. V. Hess, E. A. Modlin, “Demonstration of frequency control and cw diode laser injection control of a titanium-doped sapphire ring laser with no internal optical elements,” IEEE J. Quantum Electron. 24, 1045–1048 (1988).
[CrossRef]

P. Brockman, C. H. Bair, J. C. Barnes, R. V. Hess, E. V. Browell, “Pulsed injection control of a titanium-doped sapphire laser,” Opt. Lett. 11, 712–714 (1986).
[CrossRef] [PubMed]

Hodgkinson, I. J.

I. J. Hodgkinson, J. I. Vukusic, “Birefringent tuning filters without secondary peaks,” Opt. Commun. 24, 133–134 (1978); “Birefringent filters for tuning flashlamp-pumped dye lasers: simplified theory and design,” Appl. Opt. 17, 1944–1948 (1978).
[CrossRef] [PubMed]

Hollberg, L.

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Jain, M.

A. Kasapi, G. Y. Yin, M. Jain, “Electromagnetically induced transparency: population dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef] [PubMed]

Kasapi, A.

A. Kasapi, G. Y. Yin, M. Jain, “Electromagnetically induced transparency: population dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef] [PubMed]

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, New York, 1988); A. L. Bloom, “Modes of a laser resonator containing tilted birefringent plates,” J. Opt. Soc. Am. 64, 447–452 (1974); D. R. Preuss, J. L. Gole, “Three-state birefringent filter tuning smoothly over the visible region: theoretical treatment and experimental design,” Appl. Opt. 19, 702–710 (1980).
[CrossRef] [PubMed]

LaChambre, J.-L.

J.-L. LaChambre, P. Lavigne, G. Otis, M. Noel, “Injection locking and mode selection in TEA-CO2 laser oscillators,” IEEE J. Quantum Electron. QE-12, 756–764 (1976).
[CrossRef]

Lavigne, P.

J.-L. LaChambre, P. Lavigne, G. Otis, M. Noel, “Injection locking and mode selection in TEA-CO2 laser oscillators,” IEEE J. Quantum Electron. QE-12, 756–764 (1976).
[CrossRef]

Lee, H. S.

C. R. Prasad, H. S. Lee, T. R. Glesne, B. Monosmith, G. K. Schwemmer, “Theoretical and experimental analysis of injection seeding a Q-switched alexandrite laser,” in Advanced Solid State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings (Optical Society of America, Washington, D.C., 1991), pp. 10–13.

Littman, M. G.

Metcalf, H. J.

Modlin, E. A.

C. H. Bair, P. Brockman, R. V. Hess, E. A. Modlin, “Demonstration of frequency control and cw diode laser injection control of a titanium-doped sapphire ring laser with no internal optical elements,” IEEE J. Quantum Electron. 24, 1045–1048 (1988).
[CrossRef]

Monosmith, B.

C. R. Prasad, H. S. Lee, T. R. Glesne, B. Monosmith, G. K. Schwemmer, “Theoretical and experimental analysis of injection seeding a Q-switched alexandrite laser,” in Advanced Solid State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings (Optical Society of America, Washington, D.C., 1991), pp. 10–13.

Moulton, P. F.

Myatt, C. J.

Noel, M.

J.-L. LaChambre, P. Lavigne, G. Otis, M. Noel, “Injection locking and mode selection in TEA-CO2 laser oscillators,” IEEE J. Quantum Electron. QE-12, 756–764 (1976).
[CrossRef]

Otis, G.

J.-L. LaChambre, P. Lavigne, G. Otis, M. Noel, “Injection locking and mode selection in TEA-CO2 laser oscillators,” IEEE J. Quantum Electron. QE-12, 756–764 (1976).
[CrossRef]

Park, Y. K.

Prasad, C. R.

C. R. Prasad, H. S. Lee, T. R. Glesne, B. Monosmith, G. K. Schwemmer, “Theoretical and experimental analysis of injection seeding a Q-switched alexandrite laser,” in Advanced Solid State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings (Optical Society of America, Washington, D.C., 1991), pp. 10–13.

Raymond, T. D.

Rines, G. A.

Schwemmer, G. K.

C. R. Prasad, H. S. Lee, T. R. Glesne, B. Monosmith, G. K. Schwemmer, “Theoretical and experimental analysis of injection seeding a Q-switched alexandrite laser,” in Advanced Solid State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings (Optical Society of America, Washington, D.C., 1991), pp. 10–13.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Slatkine, M.

I. J. Bigio, M. Slatkine, “Injection-locking unstable resonator excimer lasers,” IEEE J. Quantum Electron. QE-19, 1426–1436 (1983).
[CrossRef]

Smith, A. V.

Vukusic, J. I.

I. J. Hodgkinson, J. I. Vukusic, “Birefringent tuning filters without secondary peaks,” Opt. Commun. 24, 133–134 (1978); “Birefringent filters for tuning flashlamp-pumped dye lasers: simplified theory and design,” Appl. Opt. 17, 1944–1948 (1978).
[CrossRef] [PubMed]

Wieman, C. E.

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Yin, G. Y.

A. Kasapi, G. Y. Yin, M. Jain, “Electromagnetically induced transparency: population dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef] [PubMed]

Appl. Opt. (1)

IEEE J. Quantum Electron. (3)

J.-L. LaChambre, P. Lavigne, G. Otis, M. Noel, “Injection locking and mode selection in TEA-CO2 laser oscillators,” IEEE J. Quantum Electron. QE-12, 756–764 (1976).
[CrossRef]

I. J. Bigio, M. Slatkine, “Injection-locking unstable resonator excimer lasers,” IEEE J. Quantum Electron. QE-19, 1426–1436 (1983).
[CrossRef]

C. H. Bair, P. Brockman, R. V. Hess, E. A. Modlin, “Demonstration of frequency control and cw diode laser injection control of a titanium-doped sapphire ring laser with no internal optical elements,” IEEE J. Quantum Electron. 24, 1045–1048 (1988).
[CrossRef]

Opt. Commun. (1)

I. J. Hodgkinson, J. I. Vukusic, “Birefringent tuning filters without secondary peaks,” Opt. Commun. 24, 133–134 (1978); “Birefringent filters for tuning flashlamp-pumped dye lasers: simplified theory and design,” Appl. Opt. 17, 1944–1948 (1978).
[CrossRef] [PubMed]

Opt. Lett. (6)

Phys. Rev. Lett. (1)

A. Kasapi, G. Y. Yin, M. Jain, “Electromagnetically induced transparency: population dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Other (3)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, New York, 1988); A. L. Bloom, “Modes of a laser resonator containing tilted birefringent plates,” J. Opt. Soc. Am. 64, 447–452 (1974); D. R. Preuss, J. L. Gole, “Three-state birefringent filter tuning smoothly over the visible region: theoretical treatment and experimental design,” Appl. Opt. 19, 702–710 (1980).
[CrossRef] [PubMed]

C. R. Prasad, H. S. Lee, T. R. Glesne, B. Monosmith, G. K. Schwemmer, “Theoretical and experimental analysis of injection seeding a Q-switched alexandrite laser,” in Advanced Solid State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings (Optical Society of America, Washington, D.C., 1991), pp. 10–13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the birefringent filter with opposed plates. The plates are oriented at Brewster’s angle with respect to the incident beam. The filter is tuned by adjustment of Φ1 and Φ2.

Fig. 2
Fig. 2

Transfer function for (a) the birefringent filter shown in Fig. 1; (b) a four-plate birefringent filter with all plates parallel and the beam incident at Brewster’s angle plus 1°, with the wavelength of the peak transmission shifts by 20 nm; (c) the same filter as (a) with the beam incident at Brewster’s angle plus 1°, and with a negligible shift in the center wavelength.

Fig. 3
Fig. 3

Seeded laser system

Fig. 4
Fig. 4

Transfer function of (a) the birefringent filter and the Ti:sapphire crystal together, with the transfer function modified but still qualitatively similar; (b) the birefringent filter alone.

Fig. 5
Fig. 5

Ratio p(s) of the unseeded output power to the total output power in the forward direction. For each seed power, the ratio for each of 200 pulses was recorded and the ratios ordered into 5th (●), 50th (□), and 95th (⋄) percentiles. The 5th percentiles correspond to the best coincidence of the seed wavelength with the cavity length and are fitted to a nearly reciprocal relation with the seed power.

Fig. 6
Fig. 6

Unseeded (free-running) output spectrum is shown by curve (a); curves (b), (c), (d), and (e) are the output spectra (acquired without tuning the birefringent filter) for the seed wavelengths of 847.4, 848.5, 848.9, and 850.2 nm, respectively. The intensities are individually normalized to one.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

p ( s ) = E r ( s ) / E f ( s ) E r ( 0 ) / E f ( 0 ) ,
p ( s ) = 2.0 × 10 - 4 s - 0.92 ,

Metrics