Abstract

We demonstrate simultaneous dual-wavelength operation of a self-seeded dye laser. The laser cavity consists of one dye cell, two pairs of grating and tuning mirrors, and two reflecting mirrors. This configuration can be decomposed with two grazing-incidence cavities and a standing-wave cavity. The self-seeded dual-wavelength output beams are collinear and independently tunable. We were able to vary the output powers at the two wavelengths smoothly by changing the cavity length of a master oscillator.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Piloff, “Simultaneous two-wavelength selection in the N2 laser pumped dye laser,” Appl. Phys. Lett. 21, 339–340 (1971).
    [Crossref]
  2. F. J. Duarte, in “Narrow-linewidth pulsed dye laser oscillators,” Dye Laser Principles, F. J. Duarte, L. W. Hillman, eds. (Academic, New York, 1990), pp. 143–144 and references therein.
  3. H. Takeda, Y. Akabane, F. Kannari, “Dual-wavelength operation of a flashlamp pumped narrow-linewidth Ti:sapphire laser,” Jpn. J. Appl. Phys. 33, 6557–6563 (1994).
    [Crossref]
  4. C.-L. Wang, C.-L. Pan, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity,” Appl. Phys. Lett. 64, 3089–3091 (1994).
    [Crossref]
  5. R. Scheps, J. F. Myers, “Doubly resonant Ti:sapphire laser,” IEEE Photon. Technol. Lett. 4, 1–3 (1992); R. Scheps, J. F. Myers, “Dual-wavelength coupled-cavity Ti:sapphire laser with active mirror for enhanced red operation and efficient intracavity sum frequency generation at 459 nm,” IEEE J. Quantum Electron. 30, 1050–1057 (1994).
    [Crossref]
  6. B. Zhu, K. O. Nyairo, I. H. White, “Dual-wavelength picosecond optical pulse generation using an actively mode-locked multichannel grating cavity laser,” IEEE Photon. Technol. Lett. 6, 348–351 (1994).
    [Crossref]
  7. H. W. Messenger, “Dual-wavelength laser facilitates DIAL measurements,” Laser Focus World 27, ( 9)36–39 (1991); D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse, dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
    [Crossref] [PubMed]
  8. N. P. Barnes, J. A. Williams, J. C. Barnes, G. E. Lockard, “A self-injection locked, Q-switched, line-narrowed Ti:Al2O3 laser,” IEEE J. Quantum Electron. 24, 1021–1028 (1988).
    [Crossref]
  9. M. R. H. Knowles, C. E. Webb, “Cavity configurations for copper vapour laser pumped titanium sapphire lasers,” Opt. Commun. 89, 493–506 (1992).
    [Crossref]
  10. D.-K. Ko, G. Lim, S.-H. Kim, B. H. Cha, J. Lee, “Self-seeding in the dual-cavity-type pulsed Ti:sapphire laser oscillator,” Opt. Lett. 20, 710–712 (1995).
    [Crossref] [PubMed]
  11. A. E. Siegman, Lasers (Oxford University, New York, 1986), Chaps. 11 and 29.
  12. C. Jensen, “Pulsed dye laser gain analysis and amplifier design,” in High-Power Dye Lasers, F. J. Duarte, ed. (Springer-Verlag, New York, 1991), pp. 45–91.

1995 (1)

1994 (3)

H. Takeda, Y. Akabane, F. Kannari, “Dual-wavelength operation of a flashlamp pumped narrow-linewidth Ti:sapphire laser,” Jpn. J. Appl. Phys. 33, 6557–6563 (1994).
[Crossref]

C.-L. Wang, C.-L. Pan, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity,” Appl. Phys. Lett. 64, 3089–3091 (1994).
[Crossref]

B. Zhu, K. O. Nyairo, I. H. White, “Dual-wavelength picosecond optical pulse generation using an actively mode-locked multichannel grating cavity laser,” IEEE Photon. Technol. Lett. 6, 348–351 (1994).
[Crossref]

1992 (2)

R. Scheps, J. F. Myers, “Doubly resonant Ti:sapphire laser,” IEEE Photon. Technol. Lett. 4, 1–3 (1992); R. Scheps, J. F. Myers, “Dual-wavelength coupled-cavity Ti:sapphire laser with active mirror for enhanced red operation and efficient intracavity sum frequency generation at 459 nm,” IEEE J. Quantum Electron. 30, 1050–1057 (1994).
[Crossref]

M. R. H. Knowles, C. E. Webb, “Cavity configurations for copper vapour laser pumped titanium sapphire lasers,” Opt. Commun. 89, 493–506 (1992).
[Crossref]

1991 (1)

H. W. Messenger, “Dual-wavelength laser facilitates DIAL measurements,” Laser Focus World 27, ( 9)36–39 (1991); D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse, dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
[Crossref] [PubMed]

1988 (1)

N. P. Barnes, J. A. Williams, J. C. Barnes, G. E. Lockard, “A self-injection locked, Q-switched, line-narrowed Ti:Al2O3 laser,” IEEE J. Quantum Electron. 24, 1021–1028 (1988).
[Crossref]

1971 (1)

H. J. Piloff, “Simultaneous two-wavelength selection in the N2 laser pumped dye laser,” Appl. Phys. Lett. 21, 339–340 (1971).
[Crossref]

Akabane, Y.

H. Takeda, Y. Akabane, F. Kannari, “Dual-wavelength operation of a flashlamp pumped narrow-linewidth Ti:sapphire laser,” Jpn. J. Appl. Phys. 33, 6557–6563 (1994).
[Crossref]

Barnes, J. C.

N. P. Barnes, J. A. Williams, J. C. Barnes, G. E. Lockard, “A self-injection locked, Q-switched, line-narrowed Ti:Al2O3 laser,” IEEE J. Quantum Electron. 24, 1021–1028 (1988).
[Crossref]

Barnes, N. P.

N. P. Barnes, J. A. Williams, J. C. Barnes, G. E. Lockard, “A self-injection locked, Q-switched, line-narrowed Ti:Al2O3 laser,” IEEE J. Quantum Electron. 24, 1021–1028 (1988).
[Crossref]

Cha, B. H.

Duarte, F. J.

F. J. Duarte, in “Narrow-linewidth pulsed dye laser oscillators,” Dye Laser Principles, F. J. Duarte, L. W. Hillman, eds. (Academic, New York, 1990), pp. 143–144 and references therein.

Jensen, C.

C. Jensen, “Pulsed dye laser gain analysis and amplifier design,” in High-Power Dye Lasers, F. J. Duarte, ed. (Springer-Verlag, New York, 1991), pp. 45–91.

Kannari, F.

H. Takeda, Y. Akabane, F. Kannari, “Dual-wavelength operation of a flashlamp pumped narrow-linewidth Ti:sapphire laser,” Jpn. J. Appl. Phys. 33, 6557–6563 (1994).
[Crossref]

Kim, S.-H.

Knowles, M. R. H.

M. R. H. Knowles, C. E. Webb, “Cavity configurations for copper vapour laser pumped titanium sapphire lasers,” Opt. Commun. 89, 493–506 (1992).
[Crossref]

Ko, D.-K.

Lee, J.

Lim, G.

Lockard, G. E.

N. P. Barnes, J. A. Williams, J. C. Barnes, G. E. Lockard, “A self-injection locked, Q-switched, line-narrowed Ti:Al2O3 laser,” IEEE J. Quantum Electron. 24, 1021–1028 (1988).
[Crossref]

Messenger, H. W.

H. W. Messenger, “Dual-wavelength laser facilitates DIAL measurements,” Laser Focus World 27, ( 9)36–39 (1991); D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse, dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
[Crossref] [PubMed]

Myers, J. F.

R. Scheps, J. F. Myers, “Doubly resonant Ti:sapphire laser,” IEEE Photon. Technol. Lett. 4, 1–3 (1992); R. Scheps, J. F. Myers, “Dual-wavelength coupled-cavity Ti:sapphire laser with active mirror for enhanced red operation and efficient intracavity sum frequency generation at 459 nm,” IEEE J. Quantum Electron. 30, 1050–1057 (1994).
[Crossref]

Nyairo, K. O.

B. Zhu, K. O. Nyairo, I. H. White, “Dual-wavelength picosecond optical pulse generation using an actively mode-locked multichannel grating cavity laser,” IEEE Photon. Technol. Lett. 6, 348–351 (1994).
[Crossref]

Pan, C.-L.

C.-L. Wang, C.-L. Pan, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity,” Appl. Phys. Lett. 64, 3089–3091 (1994).
[Crossref]

Piloff, H. J.

H. J. Piloff, “Simultaneous two-wavelength selection in the N2 laser pumped dye laser,” Appl. Phys. Lett. 21, 339–340 (1971).
[Crossref]

Scheps, R.

R. Scheps, J. F. Myers, “Doubly resonant Ti:sapphire laser,” IEEE Photon. Technol. Lett. 4, 1–3 (1992); R. Scheps, J. F. Myers, “Dual-wavelength coupled-cavity Ti:sapphire laser with active mirror for enhanced red operation and efficient intracavity sum frequency generation at 459 nm,” IEEE J. Quantum Electron. 30, 1050–1057 (1994).
[Crossref]

Siegman, A. E.

A. E. Siegman, Lasers (Oxford University, New York, 1986), Chaps. 11 and 29.

Takeda, H.

H. Takeda, Y. Akabane, F. Kannari, “Dual-wavelength operation of a flashlamp pumped narrow-linewidth Ti:sapphire laser,” Jpn. J. Appl. Phys. 33, 6557–6563 (1994).
[Crossref]

Wang, C.-L.

C.-L. Wang, C.-L. Pan, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity,” Appl. Phys. Lett. 64, 3089–3091 (1994).
[Crossref]

Webb, C. E.

M. R. H. Knowles, C. E. Webb, “Cavity configurations for copper vapour laser pumped titanium sapphire lasers,” Opt. Commun. 89, 493–506 (1992).
[Crossref]

White, I. H.

B. Zhu, K. O. Nyairo, I. H. White, “Dual-wavelength picosecond optical pulse generation using an actively mode-locked multichannel grating cavity laser,” IEEE Photon. Technol. Lett. 6, 348–351 (1994).
[Crossref]

Williams, J. A.

N. P. Barnes, J. A. Williams, J. C. Barnes, G. E. Lockard, “A self-injection locked, Q-switched, line-narrowed Ti:Al2O3 laser,” IEEE J. Quantum Electron. 24, 1021–1028 (1988).
[Crossref]

Zhu, B.

B. Zhu, K. O. Nyairo, I. H. White, “Dual-wavelength picosecond optical pulse generation using an actively mode-locked multichannel grating cavity laser,” IEEE Photon. Technol. Lett. 6, 348–351 (1994).
[Crossref]

Appl. Phys. Lett. (2)

C.-L. Wang, C.-L. Pan, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity,” Appl. Phys. Lett. 64, 3089–3091 (1994).
[Crossref]

H. J. Piloff, “Simultaneous two-wavelength selection in the N2 laser pumped dye laser,” Appl. Phys. Lett. 21, 339–340 (1971).
[Crossref]

IEEE J. Quantum Electron. (1)

N. P. Barnes, J. A. Williams, J. C. Barnes, G. E. Lockard, “A self-injection locked, Q-switched, line-narrowed Ti:Al2O3 laser,” IEEE J. Quantum Electron. 24, 1021–1028 (1988).
[Crossref]

IEEE Photon. Technol. Lett. (2)

R. Scheps, J. F. Myers, “Doubly resonant Ti:sapphire laser,” IEEE Photon. Technol. Lett. 4, 1–3 (1992); R. Scheps, J. F. Myers, “Dual-wavelength coupled-cavity Ti:sapphire laser with active mirror for enhanced red operation and efficient intracavity sum frequency generation at 459 nm,” IEEE J. Quantum Electron. 30, 1050–1057 (1994).
[Crossref]

B. Zhu, K. O. Nyairo, I. H. White, “Dual-wavelength picosecond optical pulse generation using an actively mode-locked multichannel grating cavity laser,” IEEE Photon. Technol. Lett. 6, 348–351 (1994).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Takeda, Y. Akabane, F. Kannari, “Dual-wavelength operation of a flashlamp pumped narrow-linewidth Ti:sapphire laser,” Jpn. J. Appl. Phys. 33, 6557–6563 (1994).
[Crossref]

Laser Focus World (1)

H. W. Messenger, “Dual-wavelength laser facilitates DIAL measurements,” Laser Focus World 27, ( 9)36–39 (1991); D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse, dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
[Crossref] [PubMed]

Opt. Commun. (1)

M. R. H. Knowles, C. E. Webb, “Cavity configurations for copper vapour laser pumped titanium sapphire lasers,” Opt. Commun. 89, 493–506 (1992).
[Crossref]

Opt. Lett. (1)

Other (3)

A. E. Siegman, Lasers (Oxford University, New York, 1986), Chaps. 11 and 29.

C. Jensen, “Pulsed dye laser gain analysis and amplifier design,” in High-Power Dye Lasers, F. J. Duarte, ed. (Springer-Verlag, New York, 1991), pp. 45–91.

F. J. Duarte, in “Narrow-linewidth pulsed dye laser oscillators,” Dye Laser Principles, F. J. Duarte, L. W. Hillman, eds. (Academic, New York, 1990), pp. 143–144 and references therein.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Dual-wavelength dye laser cavity arrangement: A, dye cell; G1, G2, gratings; TM1, TM2, tuning mirrors; M1, M2, feedback mirrors. M2–G1–A–G2–M1 forms a standing-wave cavity, and TM1–G1–A–G2–M1 and TM2–G2–A–G1–M2 form GI cavities for λ1 and λ2, respectively.

Fig. 2
Fig. 2

Spectra of the single- and dual-wavelength dye laser outputs, along with the broadband emission of the slave oscillator with 1.5 mJ of pump energy. The single- and dual-wavelength outputs are vertically shifted for convenience of comparison, and the broadband emission output is multiplied by 10.

Fig. 3
Fig. 3

Wavelength change of the dual-wavelength dye laser output as a result of the rotation of the tuning mirrors in the GI cavity.

Fig. 4
Fig. 4

Injection-seeded dual-wavelength output as a function of pump energy near 560 nm. At pump energy greater than 3.3 mJ, amplified spontaneous emission (ASE) is included in the output.

Fig. 5
Fig. 5

Change of the dual-wavelength dye laser output spectra as a result of the rotation of tuning mirror M2 with 3.5 mJ/pulse of pump energy at 82° of the incident angle (θ2) to the grating G2 while θ1 is fixed at 88°.

Fig. 6
Fig. 6

Change of the dual-wavelength output spectra as a function of the ratio (L1/L2) of the cavity lengths of the two master oscillators while L2 and L0 are fixed at 12 cm. The output spectra are vertically shifted for convenience of comparison.

Metrics