Abstract

Avalanche photodiodes, which operate above the breakdown voltage in Geiger mode connected with avalanche-quenching circuits, can be used to detect single photons and are therefore called single-photon avalanche diodes SPAD’s. Circuit configurations suitable for this operation mode are critically analyzed and their relative merits in photon counting and timing applications are assessed. Simple passive-quenching circuits (PQC’s), which are useful for SPAD device testing and selection, have fairly limited application. Suitably designed active-quenching circuits (AQC’s) make it possible to exploit the best performance of SPAD’s. Thick silicon SPAD’s that operate at high voltages (250–450 V) have photon detection efficiency higher than 50% from 540- to 850-nm wavelength and still ~3% at 1064 nm. Thin silicon SPAD’s that operate at low voltages (10–50 V) have 45% efficiency at 500 nm, declining to 10% at 830 nm and to as little as 0.1% at 1064 nm. The time resolution achieved in photon timing is 20 ps FWHM with thin SPAD’s; it ranges from 350 to 150 ps FWHM with thick SPAD’s. The achieved minimum counting dead time and maximum counting rate are 40 ns and 10 Mcps with thick silicon SPAD’s, 10 ns and 40 Mcps with thin SPAD’s. Germanium and III–V compound semiconductor SPAD’s extend the range of photon-counting techniques in the near-infrared region to at least 1600-nm wavelength.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).
  2. S. Cova, M. Bertolaccini, C. Bussolati, “The measurement of luminescence waveforms by single photon techniques,” Phys. Status. Solid A 18, 11–62 (1973).
    [CrossRef]
  3. H. Kume, K. Koyama, K. Nakatsugawa, S. Suzuki, D. Fatlowitz, “Ultrafast microchannel plate photomultipliers,” Appl. Opt. 27, 1170–1178 (1988).
    [CrossRef] [PubMed]
  4. H. Dautet, P. Deschamps, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. 32, 3894–3900 (1993); SPCM-AQ Single-photon Counting Module Data Sheet (EG&G Optoelectronics Canada, Ltd., Vaudreuil, Quebec, Canada, 1994).
    [PubMed]
  5. S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20 ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
    [CrossRef]
  6. A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, “Recent advances in the detection of optical photons with silicon photodiodes,” Nucl. Instrum. Methods A 326, 290–294 (1993).
    [CrossRef]
  7. J. G. Rarity, P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64, 2495–2498 (1990).
    [CrossRef] [PubMed]
  8. Y. H. Shih, C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
    [CrossRef] [PubMed]
  9. P. D. Townsend, J. G. Rarity, P. R. Tapster, “Single photon interference in 10 km long optical fibre interferometer,” Electron. Lett. 29, 634–635 (1993).
    [CrossRef]
  10. N. S. Nightingale, “A new silicon avalanche photodiode photon counting detector module for astronomy,” Exp. Astron. 1, 407–422 (1991).
    [CrossRef]
  11. D. Bonaccini, S. Cova, M. Ghioni, R. Gheser, S. Esposito, G. Brusa, “Novel avalanche photodiode for adaptive optics,” in Adaptive Optics in Astronomy, M. Ealey, F. Merkle, eds., Proc. SPIE 2201, 650–657 (1994).
  12. L-Q. Li, L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64, 1524–1529 (1993).
    [CrossRef]
  13. S. A. Soper, Q. L. Mattingly, P. Vegunta, “Photon burst detection of single near-infrared fluorescent molecules,” Anal. Chem. 65, 740–747 (1993).
    [CrossRef]
  14. T. A. Louis, G. Ripamonti, A. Lacaita, “Photoluminescence lifetime microscope spectrometer based on time-correlated single-photon counting with an avalanche diode detector,” Rev. Sci. Instrum. 61, 11–22 (1990).
    [CrossRef]
  15. G. S. Buller, J. S. Massa, A. C. Walker, “All solid-state microscope-based system for picosecond time-resolved photoluminescence measurements on II–VI semiconductors,” Rev. Sci. Instrum. 63, 2994–2998 (1992).
    [CrossRef]
  16. K. P. Ghiggino, M. R. Harris, P. G. Spizzirri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63, 2999–3002 (1992).
    [CrossRef]
  17. S. Cova, A. Longoni, A. Adreoni, R. Cubeddu, “A semiconductor detector for measuring ultra-weak fluorescence decays with 70 ps FWHM resolution,” IEEE J. Quantum Electron. QE-19, 630–634 (1983).
    [CrossRef]
  18. T. E. Ingerson, R. J. Kearney, R. L. Coulter, “Photon counting with photodiodes,” Appl. Opt. 22, 2013–2018 (1983).
    [CrossRef] [PubMed]
  19. A. Andreoni, R. Cubeddu, “Photophysical properties of photofrin in different solvents,” Chem. Phys. Lett. 108, 141–144 (1984).
    [CrossRef]
  20. A. Andreoni, R. Cubeddu, C. N. Knox, T. G. Truscott, “Fluorescence lifetimes of angular furocoumarins,” Photochem. Photobiol. 46, 169–173 (1987).
    [CrossRef] [PubMed]
  21. T. A. Louis, G. H. Schatz, P. Klein-Bolting, A. R. Holzwarth, G. Ripamonti, S. Cova, “Performance comparison of a single-photon avalanche diode with a microchannel-plate photomultiplier in time-correlated single-photon counting,” Rev. Sci. Instrum. 59, 1148–1152 (1988).
    [CrossRef]
  22. S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, “High accuracy picosecond characterization of gain-switched laser diodes,” Opt. Lett. 14, 1341–1343 (1989).
    [CrossRef] [PubMed]
  23. B. F. Levine, C. G. Bethea, “Room-temperature optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
    [CrossRef]
  24. G. Ripamonti, S. Cova, “Optical time-domain reflectometry with centimetre resolution at 10−15 W sensitivity,” Electron. Lett. 22, 818–819 (1986).
    [CrossRef]
  25. G. Ripamonti, M. Ghioni, A. Lacaita, “No dead-space optical time-domain reflectometer,” IEEE J. Lightwave Technol. 8, 1278–1283 (1990).
    [CrossRef]
  26. A. Lacaita, P. A. Francese, S. Cova, G. Ripamonti, “Single-photon optical time-domain reflectometer at 1.3 μm with 5-cm resolution and high sensitivity,” Opt. Lett. 18, 1110–1112 (1993).
    [CrossRef] [PubMed]
  27. G. Ripamonti, A. Lacaita, “Single-photon semiconductor photodiodes for distributed optical fiber sensors: state of the art and perspectives,” in Distributed and Multiplexed Fiber Optic Sensors II, J. P. Dakin, A. D. Kersey, eds., Proc. SPIE 1797, 38–49 (1993).
  28. M. Hoebel, J. Ricka, “Dead-time and afterpulsing correction in multiphoton timing with nonideal detectors,” Rev. Sci. Instrum. 65, 2326–2336 (1994).
    [CrossRef]
  29. I. Prochàzka, K. Hamal, B. Sopko, “Photodiode based detector package for centimeter satellite laser ranging,” in Proceedings of the Seventh International Workshop on Laser Ranging Instrumentation, C. Veillet, ed. (OCA-CERGA, Grasse, France, 1990), pp. 219–221.
  30. F. Zappa, G. Ripamonti, A. Lacaita, S. Cova, C. Samori, “Tracking capabilities of SPADs for laser ranging,” in Proceedings of the Eighth International Workshop on Laser Ranging Instrumentation, J. J. Degnan, ed., NASA Conf. Publ. 3214 (NASA, Greenbelt, Md., 1992), pp. 5, 25–30.
  31. R. G. Brown, K. D. Ridley, J. G. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching,” Appl. Opt. 25, 4122–4126 (1986).
    [CrossRef] [PubMed]
  32. R. G. Brown, R. Jones, J. G. Rarity, K. D. Ridley, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching,” Appl. Opt. 26, 2383–2389 (1987).
    [CrossRef] [PubMed]
  33. M. Ghioni, G. Ripamonti, “Improving the performance of commercially-available Geiger-mode avalanche photodiodes,” Rev. Sci. Instrum. 62, 163–167 (1991).
    [CrossRef]
  34. A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
    [CrossRef]
  35. A. Lacaita, S. Cova, M. Ghioni, F. Zappa, “Single photon avalanche diodes with ultrafast pulse response free from slow tails,” IEEE Electron. Devices Lett. 14(7), 360–362 (1993).
    [CrossRef]
  36. A. Lacaita, M. Mastrapasqua, M. Ghioni, S. Vanoli, “Observation of avalanche propagation by multiplication assisted diffusion in p–n junction,” Appl. Phys. Lett. 57, 489–491 (1990).
    [CrossRef]
  37. A. Lacaita, M. Mastrapasqua, “Strong dependence of time resolution on detector diameter in single photon avalanche diodes,” Electron. Lett. 26, 2053–2054 (1990).
    [CrossRef]
  38. A. Lacaita, S. Cova, A. Spinelli, F. Zappa, “Photon-assisted avalanche spreading in reach-through photodiodes,” Appl. Phys. Lett. 62, 606–608 (1993).
    [CrossRef]
  39. A. Lacaita, S. Longhi, A. Spinelli, “Limits to the timing performance of single photon avalanche diodes,” in Proceedings of the International Conference on Applications of Photonic Technology, G. A. Lampropulos, J. Chrostowski, R. M. Measures, eds. (Plenum, London, 1994).
  40. B. F. Levine, C. C. Bethea, “10-MHz single-photon counting at 1.3 μm,” Appl. Phys. Lett. 44, 581–582 (1984).
    [CrossRef]
  41. B. F. Levine, C. G. Bethea, “Single-photon detection at 1.3 μm using a gated avalanche photodiode,” Appl. Phys. Lett. 44, 553–555 (1984).
    [CrossRef]
  42. A. Lacaita, S. Cova, F. Zappa, P. A. Francese, “Subnanosecond single-photon timing with commercially available germanium photodiodes,” Opt. Lett. 18, 75–77 (1993).
    [CrossRef] [PubMed]
  43. A. Lacaita, P. A. Francese, F. Zappa, S. Cova, “Single-photon detection beyond 1 μm: performance of commercially available germanium photodiodes,” Appl. Opt. 33, 6902–6918 (1994).
    [CrossRef] [PubMed]
  44. F. Zappa, A. Lacaita, S. Cova, P. Webb, “Nanosecond single-photon timing with InGaAs/InP photodiodes,” Opt. Lett. 19, 846–848 (1994).
    [CrossRef] [PubMed]
  45. B. F. Levine, C. G. Bethea, C. G. Campbell, “Near room-temperature single photon counting with an InGaAs avalanche photodiode,” Electron. Lett. 20, 596–598 (1984).
    [CrossRef]
  46. R. H. Haitz, “Mechanisms contributing to the noise pulse rate of avalanche diodes,” J. Appl. Phys. 36, 3123–3131 (1965).
    [CrossRef]
  47. S. Cova, A. Lacaita, G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron. Devices Lett. 12, 685–687 (1991).
    [CrossRef]
  48. A. W. Lightstone, R. J. McIntyre, “Photon counting silicon avalanche photodiodes for photon correlation spectroscopy,” in Photon Correlation Techniques and Applications, Vol. 1 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1988), pp. 183–191.
  49. R. H. Haitz, “Model for the electrical behavior of a micro-plasma,” J. Appl. Phys. 35, 1370–1376 (1964).
    [CrossRef]
  50. S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
    [CrossRef]
  51. S. Cova, A. Longoni, G. Ripamonti, “Active-quenching and gating circuits for single-photon avalanche diodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982); presented at the IEEE 1981 Nuclear Science Symposium, San Francisco, Calif., 21–23 October 1981.
    [CrossRef]
  52. A. Lacaita, A. Spinelli, S. Longhi, “Avalanche transients in shallow p–n junctions biased above breakdown,” Appl. Phys. Lett. 67, 2627–2730 (1995).
    [CrossRef]
  53. R. D. Evans, Atomic Nucleus (McGraw-Hill, New York, 1955), Chap. 28, pp. 785–793.
  54. W. Nicholson, Nuclear Electronics (Wiley, New York, 1974), Appendix B5, pp. 473–376.
  55. Ref. 54, pp. 259–260.
  56. P. Antognetti, S. Cova, A. Longoni, “A study of the operation and performances of an avalanche diode as a single photon detector,” in Proceedings of the Second Ispra Nuclear Electronics Symposium, EURATOM Publ. EUR 537e (Office for Official Publications of the European Communities, Luxembourg, Belgium, 1975), pp. 453–456.
  57. P. A. Ekstrom, “Triggered-avalanche detection of optical photons,” J. Appl. Phys. 52, 6974–6977 (1981).
    [CrossRef]
  58. S. Cova, “Active quenching circuit for avalanche photodiodes,” U.S. patent4,963,727 (20October1990) (Italian patent 22367A/88); licensed for industrial production to Silena SpA, Milano, Italy.
  59. T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high rate situations,” Nucl. Instrum. Methods A 326, 570–573 (1993); H. C. Fenker, T. O. Regan, J. Thomas, M. Wright, “Higher efficiency active quenching circuit for avalanche photodiodes,” ICFA Instrumentation Bulletin No. 10 (Fermilab, Batvaia, Ill., December1993), pp. 12–14.
    [CrossRef]
  60. Ultrafast comparators AD96685, Linear Product Databook (Analog Devices, Inc., P.O. Box 9106, Norwood, Mass., 1988), pp. 3–17.
  61. B. K. Garside, “High resolution OTDR measurements,” Photon. Spectra 22(9), 79–86 (September1988).
  62. “1.7-μm near infrared photomultiplier” (patent pending), preliminary data sheet E(500) (Electron Tube Center, Hamamatsu Photonics KK, Hamamatsu, Japan, March1994).

1995 (1)

A. Lacaita, A. Spinelli, S. Longhi, “Avalanche transients in shallow p–n junctions biased above breakdown,” Appl. Phys. Lett. 67, 2627–2730 (1995).
[CrossRef]

1994 (3)

1993 (10)

H. Dautet, P. Deschamps, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. 32, 3894–3900 (1993); SPCM-AQ Single-photon Counting Module Data Sheet (EG&G Optoelectronics Canada, Ltd., Vaudreuil, Quebec, Canada, 1994).
[PubMed]

A. Lacaita, S. Cova, F. Zappa, P. A. Francese, “Subnanosecond single-photon timing with commercially available germanium photodiodes,” Opt. Lett. 18, 75–77 (1993).
[CrossRef] [PubMed]

A. Lacaita, P. A. Francese, S. Cova, G. Ripamonti, “Single-photon optical time-domain reflectometer at 1.3 μm with 5-cm resolution and high sensitivity,” Opt. Lett. 18, 1110–1112 (1993).
[CrossRef] [PubMed]

T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high rate situations,” Nucl. Instrum. Methods A 326, 570–573 (1993); H. C. Fenker, T. O. Regan, J. Thomas, M. Wright, “Higher efficiency active quenching circuit for avalanche photodiodes,” ICFA Instrumentation Bulletin No. 10 (Fermilab, Batvaia, Ill., December1993), pp. 12–14.
[CrossRef]

A. Lacaita, S. Cova, A. Spinelli, F. Zappa, “Photon-assisted avalanche spreading in reach-through photodiodes,” Appl. Phys. Lett. 62, 606–608 (1993).
[CrossRef]

A. Lacaita, S. Cova, M. Ghioni, F. Zappa, “Single photon avalanche diodes with ultrafast pulse response free from slow tails,” IEEE Electron. Devices Lett. 14(7), 360–362 (1993).
[CrossRef]

A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, “Recent advances in the detection of optical photons with silicon photodiodes,” Nucl. Instrum. Methods A 326, 290–294 (1993).
[CrossRef]

P. D. Townsend, J. G. Rarity, P. R. Tapster, “Single photon interference in 10 km long optical fibre interferometer,” Electron. Lett. 29, 634–635 (1993).
[CrossRef]

L-Q. Li, L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64, 1524–1529 (1993).
[CrossRef]

S. A. Soper, Q. L. Mattingly, P. Vegunta, “Photon burst detection of single near-infrared fluorescent molecules,” Anal. Chem. 65, 740–747 (1993).
[CrossRef]

1992 (2)

G. S. Buller, J. S. Massa, A. C. Walker, “All solid-state microscope-based system for picosecond time-resolved photoluminescence measurements on II–VI semiconductors,” Rev. Sci. Instrum. 63, 2994–2998 (1992).
[CrossRef]

K. P. Ghiggino, M. R. Harris, P. G. Spizzirri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63, 2999–3002 (1992).
[CrossRef]

1991 (3)

N. S. Nightingale, “A new silicon avalanche photodiode photon counting detector module for astronomy,” Exp. Astron. 1, 407–422 (1991).
[CrossRef]

M. Ghioni, G. Ripamonti, “Improving the performance of commercially-available Geiger-mode avalanche photodiodes,” Rev. Sci. Instrum. 62, 163–167 (1991).
[CrossRef]

S. Cova, A. Lacaita, G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron. Devices Lett. 12, 685–687 (1991).
[CrossRef]

1990 (5)

A. Lacaita, M. Mastrapasqua, M. Ghioni, S. Vanoli, “Observation of avalanche propagation by multiplication assisted diffusion in p–n junction,” Appl. Phys. Lett. 57, 489–491 (1990).
[CrossRef]

A. Lacaita, M. Mastrapasqua, “Strong dependence of time resolution on detector diameter in single photon avalanche diodes,” Electron. Lett. 26, 2053–2054 (1990).
[CrossRef]

G. Ripamonti, M. Ghioni, A. Lacaita, “No dead-space optical time-domain reflectometer,” IEEE J. Lightwave Technol. 8, 1278–1283 (1990).
[CrossRef]

J. G. Rarity, P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64, 2495–2498 (1990).
[CrossRef] [PubMed]

T. A. Louis, G. Ripamonti, A. Lacaita, “Photoluminescence lifetime microscope spectrometer based on time-correlated single-photon counting with an avalanche diode detector,” Rev. Sci. Instrum. 61, 11–22 (1990).
[CrossRef]

1989 (3)

A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20 ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, “High accuracy picosecond characterization of gain-switched laser diodes,” Opt. Lett. 14, 1341–1343 (1989).
[CrossRef] [PubMed]

1988 (4)

B. K. Garside, “High resolution OTDR measurements,” Photon. Spectra 22(9), 79–86 (September1988).

T. A. Louis, G. H. Schatz, P. Klein-Bolting, A. R. Holzwarth, G. Ripamonti, S. Cova, “Performance comparison of a single-photon avalanche diode with a microchannel-plate photomultiplier in time-correlated single-photon counting,” Rev. Sci. Instrum. 59, 1148–1152 (1988).
[CrossRef]

Y. H. Shih, C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
[CrossRef] [PubMed]

H. Kume, K. Koyama, K. Nakatsugawa, S. Suzuki, D. Fatlowitz, “Ultrafast microchannel plate photomultipliers,” Appl. Opt. 27, 1170–1178 (1988).
[CrossRef] [PubMed]

1987 (2)

1986 (2)

G. Ripamonti, S. Cova, “Optical time-domain reflectometry with centimetre resolution at 10−15 W sensitivity,” Electron. Lett. 22, 818–819 (1986).
[CrossRef]

R. G. Brown, K. D. Ridley, J. G. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching,” Appl. Opt. 25, 4122–4126 (1986).
[CrossRef] [PubMed]

1985 (1)

B. F. Levine, C. G. Bethea, “Room-temperature optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
[CrossRef]

1984 (4)

A. Andreoni, R. Cubeddu, “Photophysical properties of photofrin in different solvents,” Chem. Phys. Lett. 108, 141–144 (1984).
[CrossRef]

B. F. Levine, C. C. Bethea, “10-MHz single-photon counting at 1.3 μm,” Appl. Phys. Lett. 44, 581–582 (1984).
[CrossRef]

B. F. Levine, C. G. Bethea, “Single-photon detection at 1.3 μm using a gated avalanche photodiode,” Appl. Phys. Lett. 44, 553–555 (1984).
[CrossRef]

B. F. Levine, C. G. Bethea, C. G. Campbell, “Near room-temperature single photon counting with an InGaAs avalanche photodiode,” Electron. Lett. 20, 596–598 (1984).
[CrossRef]

1983 (2)

S. Cova, A. Longoni, A. Adreoni, R. Cubeddu, “A semiconductor detector for measuring ultra-weak fluorescence decays with 70 ps FWHM resolution,” IEEE J. Quantum Electron. QE-19, 630–634 (1983).
[CrossRef]

T. E. Ingerson, R. J. Kearney, R. L. Coulter, “Photon counting with photodiodes,” Appl. Opt. 22, 2013–2018 (1983).
[CrossRef] [PubMed]

1982 (1)

S. Cova, A. Longoni, G. Ripamonti, “Active-quenching and gating circuits for single-photon avalanche diodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982); presented at the IEEE 1981 Nuclear Science Symposium, San Francisco, Calif., 21–23 October 1981.
[CrossRef]

1981 (2)

S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

P. A. Ekstrom, “Triggered-avalanche detection of optical photons,” J. Appl. Phys. 52, 6974–6977 (1981).
[CrossRef]

1973 (1)

S. Cova, M. Bertolaccini, C. Bussolati, “The measurement of luminescence waveforms by single photon techniques,” Phys. Status. Solid A 18, 11–62 (1973).
[CrossRef]

1965 (1)

R. H. Haitz, “Mechanisms contributing to the noise pulse rate of avalanche diodes,” J. Appl. Phys. 36, 3123–3131 (1965).
[CrossRef]

1964 (1)

R. H. Haitz, “Model for the electrical behavior of a micro-plasma,” J. Appl. Phys. 35, 1370–1376 (1964).
[CrossRef]

Adreoni, A.

S. Cova, A. Longoni, A. Adreoni, R. Cubeddu, “A semiconductor detector for measuring ultra-weak fluorescence decays with 70 ps FWHM resolution,” IEEE J. Quantum Electron. QE-19, 630–634 (1983).
[CrossRef]

Alley, C. O.

Y. H. Shih, C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
[CrossRef] [PubMed]

Andreoni, A.

A. Andreoni, R. Cubeddu, C. N. Knox, T. G. Truscott, “Fluorescence lifetimes of angular furocoumarins,” Photochem. Photobiol. 46, 169–173 (1987).
[CrossRef] [PubMed]

A. Andreoni, R. Cubeddu, “Photophysical properties of photofrin in different solvents,” Chem. Phys. Lett. 108, 141–144 (1984).
[CrossRef]

S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

Antognetti, P.

P. Antognetti, S. Cova, A. Longoni, “A study of the operation and performances of an avalanche diode as a single photon detector,” in Proceedings of the Second Ispra Nuclear Electronics Symposium, EURATOM Publ. EUR 537e (Office for Official Publications of the European Communities, Luxembourg, Belgium, 1975), pp. 453–456.

Bertolaccini, M.

S. Cova, M. Bertolaccini, C. Bussolati, “The measurement of luminescence waveforms by single photon techniques,” Phys. Status. Solid A 18, 11–62 (1973).
[CrossRef]

Bethea, C. C.

B. F. Levine, C. C. Bethea, “10-MHz single-photon counting at 1.3 μm,” Appl. Phys. Lett. 44, 581–582 (1984).
[CrossRef]

Bethea, C. G.

B. F. Levine, C. G. Bethea, “Room-temperature optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
[CrossRef]

B. F. Levine, C. G. Bethea, “Single-photon detection at 1.3 μm using a gated avalanche photodiode,” Appl. Phys. Lett. 44, 553–555 (1984).
[CrossRef]

B. F. Levine, C. G. Bethea, C. G. Campbell, “Near room-temperature single photon counting with an InGaAs avalanche photodiode,” Electron. Lett. 20, 596–598 (1984).
[CrossRef]

Bonaccini, D.

D. Bonaccini, S. Cova, M. Ghioni, R. Gheser, S. Esposito, G. Brusa, “Novel avalanche photodiode for adaptive optics,” in Adaptive Optics in Astronomy, M. Ealey, F. Merkle, eds., Proc. SPIE 2201, 650–657 (1994).

Brown, R. G.

Brusa, G.

D. Bonaccini, S. Cova, M. Ghioni, R. Gheser, S. Esposito, G. Brusa, “Novel avalanche photodiode for adaptive optics,” in Adaptive Optics in Astronomy, M. Ealey, F. Merkle, eds., Proc. SPIE 2201, 650–657 (1994).

Buller, G. S.

G. S. Buller, J. S. Massa, A. C. Walker, “All solid-state microscope-based system for picosecond time-resolved photoluminescence measurements on II–VI semiconductors,” Rev. Sci. Instrum. 63, 2994–2998 (1992).
[CrossRef]

Bussolati, C.

S. Cova, M. Bertolaccini, C. Bussolati, “The measurement of luminescence waveforms by single photon techniques,” Phys. Status. Solid A 18, 11–62 (1973).
[CrossRef]

Campbell, C. G.

B. F. Levine, C. G. Bethea, C. G. Campbell, “Near room-temperature single photon counting with an InGaAs avalanche photodiode,” Electron. Lett. 20, 596–598 (1984).
[CrossRef]

Coulter, R. L.

Cova, S.

A. Lacaita, P. A. Francese, F. Zappa, S. Cova, “Single-photon detection beyond 1 μm: performance of commercially available germanium photodiodes,” Appl. Opt. 33, 6902–6918 (1994).
[CrossRef] [PubMed]

F. Zappa, A. Lacaita, S. Cova, P. Webb, “Nanosecond single-photon timing with InGaAs/InP photodiodes,” Opt. Lett. 19, 846–848 (1994).
[CrossRef] [PubMed]

A. Lacaita, P. A. Francese, S. Cova, G. Ripamonti, “Single-photon optical time-domain reflectometer at 1.3 μm with 5-cm resolution and high sensitivity,” Opt. Lett. 18, 1110–1112 (1993).
[CrossRef] [PubMed]

A. Lacaita, S. Cova, M. Ghioni, F. Zappa, “Single photon avalanche diodes with ultrafast pulse response free from slow tails,” IEEE Electron. Devices Lett. 14(7), 360–362 (1993).
[CrossRef]

A. Lacaita, S. Cova, F. Zappa, P. A. Francese, “Subnanosecond single-photon timing with commercially available germanium photodiodes,” Opt. Lett. 18, 75–77 (1993).
[CrossRef] [PubMed]

A. Lacaita, S. Cova, A. Spinelli, F. Zappa, “Photon-assisted avalanche spreading in reach-through photodiodes,” Appl. Phys. Lett. 62, 606–608 (1993).
[CrossRef]

A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, “Recent advances in the detection of optical photons with silicon photodiodes,” Nucl. Instrum. Methods A 326, 290–294 (1993).
[CrossRef]

S. Cova, A. Lacaita, G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron. Devices Lett. 12, 685–687 (1991).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20 ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, “High accuracy picosecond characterization of gain-switched laser diodes,” Opt. Lett. 14, 1341–1343 (1989).
[CrossRef] [PubMed]

T. A. Louis, G. H. Schatz, P. Klein-Bolting, A. R. Holzwarth, G. Ripamonti, S. Cova, “Performance comparison of a single-photon avalanche diode with a microchannel-plate photomultiplier in time-correlated single-photon counting,” Rev. Sci. Instrum. 59, 1148–1152 (1988).
[CrossRef]

G. Ripamonti, S. Cova, “Optical time-domain reflectometry with centimetre resolution at 10−15 W sensitivity,” Electron. Lett. 22, 818–819 (1986).
[CrossRef]

S. Cova, A. Longoni, A. Adreoni, R. Cubeddu, “A semiconductor detector for measuring ultra-weak fluorescence decays with 70 ps FWHM resolution,” IEEE J. Quantum Electron. QE-19, 630–634 (1983).
[CrossRef]

S. Cova, A. Longoni, G. Ripamonti, “Active-quenching and gating circuits for single-photon avalanche diodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982); presented at the IEEE 1981 Nuclear Science Symposium, San Francisco, Calif., 21–23 October 1981.
[CrossRef]

S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

S. Cova, M. Bertolaccini, C. Bussolati, “The measurement of luminescence waveforms by single photon techniques,” Phys. Status. Solid A 18, 11–62 (1973).
[CrossRef]

D. Bonaccini, S. Cova, M. Ghioni, R. Gheser, S. Esposito, G. Brusa, “Novel avalanche photodiode for adaptive optics,” in Adaptive Optics in Astronomy, M. Ealey, F. Merkle, eds., Proc. SPIE 2201, 650–657 (1994).

F. Zappa, G. Ripamonti, A. Lacaita, S. Cova, C. Samori, “Tracking capabilities of SPADs for laser ranging,” in Proceedings of the Eighth International Workshop on Laser Ranging Instrumentation, J. J. Degnan, ed., NASA Conf. Publ. 3214 (NASA, Greenbelt, Md., 1992), pp. 5, 25–30.

P. Antognetti, S. Cova, A. Longoni, “A study of the operation and performances of an avalanche diode as a single photon detector,” in Proceedings of the Second Ispra Nuclear Electronics Symposium, EURATOM Publ. EUR 537e (Office for Official Publications of the European Communities, Luxembourg, Belgium, 1975), pp. 453–456.

S. Cova, “Active quenching circuit for avalanche photodiodes,” U.S. patent4,963,727 (20October1990) (Italian patent 22367A/88); licensed for industrial production to Silena SpA, Milano, Italy.

Cubeddu, R.

A. Andreoni, R. Cubeddu, C. N. Knox, T. G. Truscott, “Fluorescence lifetimes of angular furocoumarins,” Photochem. Photobiol. 46, 169–173 (1987).
[CrossRef] [PubMed]

A. Andreoni, R. Cubeddu, “Photophysical properties of photofrin in different solvents,” Chem. Phys. Lett. 108, 141–144 (1984).
[CrossRef]

S. Cova, A. Longoni, A. Adreoni, R. Cubeddu, “A semiconductor detector for measuring ultra-weak fluorescence decays with 70 ps FWHM resolution,” IEEE J. Quantum Electron. QE-19, 630–634 (1983).
[CrossRef]

Dautet, H.

Davis, L. M.

L-Q. Li, L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64, 1524–1529 (1993).
[CrossRef]

Deschamps, P.

Dion, B.

Ekstrom, P. A.

P. A. Ekstrom, “Triggered-avalanche detection of optical photons,” J. Appl. Phys. 52, 6974–6977 (1981).
[CrossRef]

Esposito, S.

D. Bonaccini, S. Cova, M. Ghioni, R. Gheser, S. Esposito, G. Brusa, “Novel avalanche photodiode for adaptive optics,” in Adaptive Optics in Astronomy, M. Ealey, F. Merkle, eds., Proc. SPIE 2201, 650–657 (1994).

Evans, R. D.

R. D. Evans, Atomic Nucleus (McGraw-Hill, New York, 1955), Chap. 28, pp. 785–793.

Fatlowitz, D.

Fenker, H. C.

T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high rate situations,” Nucl. Instrum. Methods A 326, 570–573 (1993); H. C. Fenker, T. O. Regan, J. Thomas, M. Wright, “Higher efficiency active quenching circuit for avalanche photodiodes,” ICFA Instrumentation Bulletin No. 10 (Fermilab, Batvaia, Ill., December1993), pp. 12–14.
[CrossRef]

Francese, P. A.

Garside, B. K.

B. K. Garside, “High resolution OTDR measurements,” Photon. Spectra 22(9), 79–86 (September1988).

Gheser, R.

D. Bonaccini, S. Cova, M. Ghioni, R. Gheser, S. Esposito, G. Brusa, “Novel avalanche photodiode for adaptive optics,” in Adaptive Optics in Astronomy, M. Ealey, F. Merkle, eds., Proc. SPIE 2201, 650–657 (1994).

Ghiggino, K. P.

K. P. Ghiggino, M. R. Harris, P. G. Spizzirri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63, 2999–3002 (1992).
[CrossRef]

Ghioni, M.

A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, “Recent advances in the detection of optical photons with silicon photodiodes,” Nucl. Instrum. Methods A 326, 290–294 (1993).
[CrossRef]

A. Lacaita, S. Cova, M. Ghioni, F. Zappa, “Single photon avalanche diodes with ultrafast pulse response free from slow tails,” IEEE Electron. Devices Lett. 14(7), 360–362 (1993).
[CrossRef]

M. Ghioni, G. Ripamonti, “Improving the performance of commercially-available Geiger-mode avalanche photodiodes,” Rev. Sci. Instrum. 62, 163–167 (1991).
[CrossRef]

A. Lacaita, M. Mastrapasqua, M. Ghioni, S. Vanoli, “Observation of avalanche propagation by multiplication assisted diffusion in p–n junction,” Appl. Phys. Lett. 57, 489–491 (1990).
[CrossRef]

G. Ripamonti, M. Ghioni, A. Lacaita, “No dead-space optical time-domain reflectometer,” IEEE J. Lightwave Technol. 8, 1278–1283 (1990).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, “High accuracy picosecond characterization of gain-switched laser diodes,” Opt. Lett. 14, 1341–1343 (1989).
[CrossRef] [PubMed]

A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20 ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

D. Bonaccini, S. Cova, M. Ghioni, R. Gheser, S. Esposito, G. Brusa, “Novel avalanche photodiode for adaptive optics,” in Adaptive Optics in Astronomy, M. Ealey, F. Merkle, eds., Proc. SPIE 2201, 650–657 (1994).

Haitz, R. H.

R. H. Haitz, “Mechanisms contributing to the noise pulse rate of avalanche diodes,” J. Appl. Phys. 36, 3123–3131 (1965).
[CrossRef]

R. H. Haitz, “Model for the electrical behavior of a micro-plasma,” J. Appl. Phys. 35, 1370–1376 (1964).
[CrossRef]

Hamal, K.

I. Prochàzka, K. Hamal, B. Sopko, “Photodiode based detector package for centimeter satellite laser ranging,” in Proceedings of the Seventh International Workshop on Laser Ranging Instrumentation, C. Veillet, ed. (OCA-CERGA, Grasse, France, 1990), pp. 219–221.

Harris, M. R.

K. P. Ghiggino, M. R. Harris, P. G. Spizzirri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63, 2999–3002 (1992).
[CrossRef]

Hoebel, M.

M. Hoebel, J. Ricka, “Dead-time and afterpulsing correction in multiphoton timing with nonideal detectors,” Rev. Sci. Instrum. 65, 2326–2336 (1994).
[CrossRef]

Holzwarth, A. R.

T. A. Louis, G. H. Schatz, P. Klein-Bolting, A. R. Holzwarth, G. Ripamonti, S. Cova, “Performance comparison of a single-photon avalanche diode with a microchannel-plate photomultiplier in time-correlated single-photon counting,” Rev. Sci. Instrum. 59, 1148–1152 (1988).
[CrossRef]

Ingerson, T. E.

Jones, R.

Kearney, R. J.

Klein-Bolting, P.

T. A. Louis, G. H. Schatz, P. Klein-Bolting, A. R. Holzwarth, G. Ripamonti, S. Cova, “Performance comparison of a single-photon avalanche diode with a microchannel-plate photomultiplier in time-correlated single-photon counting,” Rev. Sci. Instrum. 59, 1148–1152 (1988).
[CrossRef]

Knox, C. N.

A. Andreoni, R. Cubeddu, C. N. Knox, T. G. Truscott, “Fluorescence lifetimes of angular furocoumarins,” Photochem. Photobiol. 46, 169–173 (1987).
[CrossRef] [PubMed]

Koyama, K.

Kume, H.

Lacaita, A.

A. Lacaita, A. Spinelli, S. Longhi, “Avalanche transients in shallow p–n junctions biased above breakdown,” Appl. Phys. Lett. 67, 2627–2730 (1995).
[CrossRef]

F. Zappa, A. Lacaita, S. Cova, P. Webb, “Nanosecond single-photon timing with InGaAs/InP photodiodes,” Opt. Lett. 19, 846–848 (1994).
[CrossRef] [PubMed]

A. Lacaita, P. A. Francese, F. Zappa, S. Cova, “Single-photon detection beyond 1 μm: performance of commercially available germanium photodiodes,” Appl. Opt. 33, 6902–6918 (1994).
[CrossRef] [PubMed]

A. Lacaita, S. Cova, F. Zappa, P. A. Francese, “Subnanosecond single-photon timing with commercially available germanium photodiodes,” Opt. Lett. 18, 75–77 (1993).
[CrossRef] [PubMed]

A. Lacaita, S. Cova, A. Spinelli, F. Zappa, “Photon-assisted avalanche spreading in reach-through photodiodes,” Appl. Phys. Lett. 62, 606–608 (1993).
[CrossRef]

A. Lacaita, S. Cova, M. Ghioni, F. Zappa, “Single photon avalanche diodes with ultrafast pulse response free from slow tails,” IEEE Electron. Devices Lett. 14(7), 360–362 (1993).
[CrossRef]

A. Lacaita, P. A. Francese, S. Cova, G. Ripamonti, “Single-photon optical time-domain reflectometer at 1.3 μm with 5-cm resolution and high sensitivity,” Opt. Lett. 18, 1110–1112 (1993).
[CrossRef] [PubMed]

A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, “Recent advances in the detection of optical photons with silicon photodiodes,” Nucl. Instrum. Methods A 326, 290–294 (1993).
[CrossRef]

S. Cova, A. Lacaita, G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron. Devices Lett. 12, 685–687 (1991).
[CrossRef]

T. A. Louis, G. Ripamonti, A. Lacaita, “Photoluminescence lifetime microscope spectrometer based on time-correlated single-photon counting with an avalanche diode detector,” Rev. Sci. Instrum. 61, 11–22 (1990).
[CrossRef]

G. Ripamonti, M. Ghioni, A. Lacaita, “No dead-space optical time-domain reflectometer,” IEEE J. Lightwave Technol. 8, 1278–1283 (1990).
[CrossRef]

A. Lacaita, M. Mastrapasqua, M. Ghioni, S. Vanoli, “Observation of avalanche propagation by multiplication assisted diffusion in p–n junction,” Appl. Phys. Lett. 57, 489–491 (1990).
[CrossRef]

A. Lacaita, M. Mastrapasqua, “Strong dependence of time resolution on detector diameter in single photon avalanche diodes,” Electron. Lett. 26, 2053–2054 (1990).
[CrossRef]

A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, “High accuracy picosecond characterization of gain-switched laser diodes,” Opt. Lett. 14, 1341–1343 (1989).
[CrossRef] [PubMed]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20 ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

G. Ripamonti, A. Lacaita, “Single-photon semiconductor photodiodes for distributed optical fiber sensors: state of the art and perspectives,” in Distributed and Multiplexed Fiber Optic Sensors II, J. P. Dakin, A. D. Kersey, eds., Proc. SPIE 1797, 38–49 (1993).

F. Zappa, G. Ripamonti, A. Lacaita, S. Cova, C. Samori, “Tracking capabilities of SPADs for laser ranging,” in Proceedings of the Eighth International Workshop on Laser Ranging Instrumentation, J. J. Degnan, ed., NASA Conf. Publ. 3214 (NASA, Greenbelt, Md., 1992), pp. 5, 25–30.

A. Lacaita, S. Longhi, A. Spinelli, “Limits to the timing performance of single photon avalanche diodes,” in Proceedings of the International Conference on Applications of Photonic Technology, G. A. Lampropulos, J. Chrostowski, R. M. Measures, eds. (Plenum, London, 1994).

Levine, B. F.

B. F. Levine, C. G. Bethea, “Room-temperature optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
[CrossRef]

B. F. Levine, C. G. Bethea, “Single-photon detection at 1.3 μm using a gated avalanche photodiode,” Appl. Phys. Lett. 44, 553–555 (1984).
[CrossRef]

B. F. Levine, C. G. Bethea, C. G. Campbell, “Near room-temperature single photon counting with an InGaAs avalanche photodiode,” Electron. Lett. 20, 596–598 (1984).
[CrossRef]

B. F. Levine, C. C. Bethea, “10-MHz single-photon counting at 1.3 μm,” Appl. Phys. Lett. 44, 581–582 (1984).
[CrossRef]

Li, L-Q.

L-Q. Li, L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64, 1524–1529 (1993).
[CrossRef]

Lightstone, A. W.

A. W. Lightstone, R. J. McIntyre, “Photon counting silicon avalanche photodiodes for photon correlation spectroscopy,” in Photon Correlation Techniques and Applications, Vol. 1 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1988), pp. 183–191.

Longhi, S.

A. Lacaita, A. Spinelli, S. Longhi, “Avalanche transients in shallow p–n junctions biased above breakdown,” Appl. Phys. Lett. 67, 2627–2730 (1995).
[CrossRef]

A. Lacaita, S. Longhi, A. Spinelli, “Limits to the timing performance of single photon avalanche diodes,” in Proceedings of the International Conference on Applications of Photonic Technology, G. A. Lampropulos, J. Chrostowski, R. M. Measures, eds. (Plenum, London, 1994).

Longoni, A.

S. Cova, A. Longoni, A. Adreoni, R. Cubeddu, “A semiconductor detector for measuring ultra-weak fluorescence decays with 70 ps FWHM resolution,” IEEE J. Quantum Electron. QE-19, 630–634 (1983).
[CrossRef]

S. Cova, A. Longoni, G. Ripamonti, “Active-quenching and gating circuits for single-photon avalanche diodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982); presented at the IEEE 1981 Nuclear Science Symposium, San Francisco, Calif., 21–23 October 1981.
[CrossRef]

S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

P. Antognetti, S. Cova, A. Longoni, “A study of the operation and performances of an avalanche diode as a single photon detector,” in Proceedings of the Second Ispra Nuclear Electronics Symposium, EURATOM Publ. EUR 537e (Office for Official Publications of the European Communities, Luxembourg, Belgium, 1975), pp. 453–456.

Louis, T. A.

T. A. Louis, G. Ripamonti, A. Lacaita, “Photoluminescence lifetime microscope spectrometer based on time-correlated single-photon counting with an avalanche diode detector,” Rev. Sci. Instrum. 61, 11–22 (1990).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20 ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

T. A. Louis, G. H. Schatz, P. Klein-Bolting, A. R. Holzwarth, G. Ripamonti, S. Cova, “Performance comparison of a single-photon avalanche diode with a microchannel-plate photomultiplier in time-correlated single-photon counting,” Rev. Sci. Instrum. 59, 1148–1152 (1988).
[CrossRef]

MacGregor, A. D.

MacSween, D.

Massa, J. S.

G. S. Buller, J. S. Massa, A. C. Walker, “All solid-state microscope-based system for picosecond time-resolved photoluminescence measurements on II–VI semiconductors,” Rev. Sci. Instrum. 63, 2994–2998 (1992).
[CrossRef]

Mastrapasqua, M.

A. Lacaita, M. Mastrapasqua, “Strong dependence of time resolution on detector diameter in single photon avalanche diodes,” Electron. Lett. 26, 2053–2054 (1990).
[CrossRef]

A. Lacaita, M. Mastrapasqua, M. Ghioni, S. Vanoli, “Observation of avalanche propagation by multiplication assisted diffusion in p–n junction,” Appl. Phys. Lett. 57, 489–491 (1990).
[CrossRef]

Mattingly, Q. L.

S. A. Soper, Q. L. Mattingly, P. Vegunta, “Photon burst detection of single near-infrared fluorescent molecules,” Anal. Chem. 65, 740–747 (1993).
[CrossRef]

McIntyre, R. J.

H. Dautet, P. Deschamps, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. 32, 3894–3900 (1993); SPCM-AQ Single-photon Counting Module Data Sheet (EG&G Optoelectronics Canada, Ltd., Vaudreuil, Quebec, Canada, 1994).
[PubMed]

A. W. Lightstone, R. J. McIntyre, “Photon counting silicon avalanche photodiodes for photon correlation spectroscopy,” in Photon Correlation Techniques and Applications, Vol. 1 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1988), pp. 183–191.

Nakatsugawa, K.

Nicholson, W.

W. Nicholson, Nuclear Electronics (Wiley, New York, 1974), Appendix B5, pp. 473–376.

Nightingale, N. S.

N. S. Nightingale, “A new silicon avalanche photodiode photon counting detector module for astronomy,” Exp. Astron. 1, 407–422 (1991).
[CrossRef]

O’Connor, V.

V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).

Oliver, J.

T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high rate situations,” Nucl. Instrum. Methods A 326, 570–573 (1993); H. C. Fenker, T. O. Regan, J. Thomas, M. Wright, “Higher efficiency active quenching circuit for avalanche photodiodes,” ICFA Instrumentation Bulletin No. 10 (Fermilab, Batvaia, Ill., December1993), pp. 12–14.
[CrossRef]

Phillips, D.

V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).

Prochàzka, I.

I. Prochàzka, K. Hamal, B. Sopko, “Photodiode based detector package for centimeter satellite laser ranging,” in Proceedings of the Seventh International Workshop on Laser Ranging Instrumentation, C. Veillet, ed. (OCA-CERGA, Grasse, France, 1990), pp. 219–221.

Rarity, J. G.

P. D. Townsend, J. G. Rarity, P. R. Tapster, “Single photon interference in 10 km long optical fibre interferometer,” Electron. Lett. 29, 634–635 (1993).
[CrossRef]

J. G. Rarity, P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64, 2495–2498 (1990).
[CrossRef] [PubMed]

R. G. Brown, R. Jones, J. G. Rarity, K. D. Ridley, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching,” Appl. Opt. 26, 2383–2389 (1987).
[CrossRef] [PubMed]

R. G. Brown, K. D. Ridley, J. G. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching,” Appl. Opt. 25, 4122–4126 (1986).
[CrossRef] [PubMed]

Regan, T. O.

T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high rate situations,” Nucl. Instrum. Methods A 326, 570–573 (1993); H. C. Fenker, T. O. Regan, J. Thomas, M. Wright, “Higher efficiency active quenching circuit for avalanche photodiodes,” ICFA Instrumentation Bulletin No. 10 (Fermilab, Batvaia, Ill., December1993), pp. 12–14.
[CrossRef]

Ricka, J.

M. Hoebel, J. Ricka, “Dead-time and afterpulsing correction in multiphoton timing with nonideal detectors,” Rev. Sci. Instrum. 65, 2326–2336 (1994).
[CrossRef]

Ridley, K. D.

Ripamonti, G.

A. Lacaita, P. A. Francese, S. Cova, G. Ripamonti, “Single-photon optical time-domain reflectometer at 1.3 μm with 5-cm resolution and high sensitivity,” Opt. Lett. 18, 1110–1112 (1993).
[CrossRef] [PubMed]

A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, “Recent advances in the detection of optical photons with silicon photodiodes,” Nucl. Instrum. Methods A 326, 290–294 (1993).
[CrossRef]

M. Ghioni, G. Ripamonti, “Improving the performance of commercially-available Geiger-mode avalanche photodiodes,” Rev. Sci. Instrum. 62, 163–167 (1991).
[CrossRef]

S. Cova, A. Lacaita, G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron. Devices Lett. 12, 685–687 (1991).
[CrossRef]

G. Ripamonti, M. Ghioni, A. Lacaita, “No dead-space optical time-domain reflectometer,” IEEE J. Lightwave Technol. 8, 1278–1283 (1990).
[CrossRef]

T. A. Louis, G. Ripamonti, A. Lacaita, “Photoluminescence lifetime microscope spectrometer based on time-correlated single-photon counting with an avalanche diode detector,” Rev. Sci. Instrum. 61, 11–22 (1990).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20 ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, “High accuracy picosecond characterization of gain-switched laser diodes,” Opt. Lett. 14, 1341–1343 (1989).
[CrossRef] [PubMed]

T. A. Louis, G. H. Schatz, P. Klein-Bolting, A. R. Holzwarth, G. Ripamonti, S. Cova, “Performance comparison of a single-photon avalanche diode with a microchannel-plate photomultiplier in time-correlated single-photon counting,” Rev. Sci. Instrum. 59, 1148–1152 (1988).
[CrossRef]

G. Ripamonti, S. Cova, “Optical time-domain reflectometry with centimetre resolution at 10−15 W sensitivity,” Electron. Lett. 22, 818–819 (1986).
[CrossRef]

S. Cova, A. Longoni, G. Ripamonti, “Active-quenching and gating circuits for single-photon avalanche diodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982); presented at the IEEE 1981 Nuclear Science Symposium, San Francisco, Calif., 21–23 October 1981.
[CrossRef]

G. Ripamonti, A. Lacaita, “Single-photon semiconductor photodiodes for distributed optical fiber sensors: state of the art and perspectives,” in Distributed and Multiplexed Fiber Optic Sensors II, J. P. Dakin, A. D. Kersey, eds., Proc. SPIE 1797, 38–49 (1993).

F. Zappa, G. Ripamonti, A. Lacaita, S. Cova, C. Samori, “Tracking capabilities of SPADs for laser ranging,” in Proceedings of the Eighth International Workshop on Laser Ranging Instrumentation, J. J. Degnan, ed., NASA Conf. Publ. 3214 (NASA, Greenbelt, Md., 1992), pp. 5, 25–30.

Samori, C.

F. Zappa, G. Ripamonti, A. Lacaita, S. Cova, C. Samori, “Tracking capabilities of SPADs for laser ranging,” in Proceedings of the Eighth International Workshop on Laser Ranging Instrumentation, J. J. Degnan, ed., NASA Conf. Publ. 3214 (NASA, Greenbelt, Md., 1992), pp. 5, 25–30.

Schatz, G. H.

T. A. Louis, G. H. Schatz, P. Klein-Bolting, A. R. Holzwarth, G. Ripamonti, S. Cova, “Performance comparison of a single-photon avalanche diode with a microchannel-plate photomultiplier in time-correlated single-photon counting,” Rev. Sci. Instrum. 59, 1148–1152 (1988).
[CrossRef]

Shih, Y. H.

Y. H. Shih, C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
[CrossRef] [PubMed]

Soper, S. A.

S. A. Soper, Q. L. Mattingly, P. Vegunta, “Photon burst detection of single near-infrared fluorescent molecules,” Anal. Chem. 65, 740–747 (1993).
[CrossRef]

Sopko, B.

I. Prochàzka, K. Hamal, B. Sopko, “Photodiode based detector package for centimeter satellite laser ranging,” in Proceedings of the Seventh International Workshop on Laser Ranging Instrumentation, C. Veillet, ed. (OCA-CERGA, Grasse, France, 1990), pp. 219–221.

Spinelli, A.

A. Lacaita, A. Spinelli, S. Longhi, “Avalanche transients in shallow p–n junctions biased above breakdown,” Appl. Phys. Lett. 67, 2627–2730 (1995).
[CrossRef]

A. Lacaita, S. Cova, A. Spinelli, F. Zappa, “Photon-assisted avalanche spreading in reach-through photodiodes,” Appl. Phys. Lett. 62, 606–608 (1993).
[CrossRef]

A. Lacaita, S. Longhi, A. Spinelli, “Limits to the timing performance of single photon avalanche diodes,” in Proceedings of the International Conference on Applications of Photonic Technology, G. A. Lampropulos, J. Chrostowski, R. M. Measures, eds. (Plenum, London, 1994).

Spizzirri, P. G.

K. P. Ghiggino, M. R. Harris, P. G. Spizzirri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63, 2999–3002 (1992).
[CrossRef]

Suzuki, S.

Tapster, P. R.

P. D. Townsend, J. G. Rarity, P. R. Tapster, “Single photon interference in 10 km long optical fibre interferometer,” Electron. Lett. 29, 634–635 (1993).
[CrossRef]

J. G. Rarity, P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64, 2495–2498 (1990).
[CrossRef] [PubMed]

Thomas, J.

T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high rate situations,” Nucl. Instrum. Methods A 326, 570–573 (1993); H. C. Fenker, T. O. Regan, J. Thomas, M. Wright, “Higher efficiency active quenching circuit for avalanche photodiodes,” ICFA Instrumentation Bulletin No. 10 (Fermilab, Batvaia, Ill., December1993), pp. 12–14.
[CrossRef]

Townsend, P. D.

P. D. Townsend, J. G. Rarity, P. R. Tapster, “Single photon interference in 10 km long optical fibre interferometer,” Electron. Lett. 29, 634–635 (1993).
[CrossRef]

Trottier, C.

Truscott, T. G.

A. Andreoni, R. Cubeddu, C. N. Knox, T. G. Truscott, “Fluorescence lifetimes of angular furocoumarins,” Photochem. Photobiol. 46, 169–173 (1987).
[CrossRef] [PubMed]

Vanoli, S.

A. Lacaita, M. Mastrapasqua, M. Ghioni, S. Vanoli, “Observation of avalanche propagation by multiplication assisted diffusion in p–n junction,” Appl. Phys. Lett. 57, 489–491 (1990).
[CrossRef]

Vegunta, P.

S. A. Soper, Q. L. Mattingly, P. Vegunta, “Photon burst detection of single near-infrared fluorescent molecules,” Anal. Chem. 65, 740–747 (1993).
[CrossRef]

Walker, A. C.

G. S. Buller, J. S. Massa, A. C. Walker, “All solid-state microscope-based system for picosecond time-resolved photoluminescence measurements on II–VI semiconductors,” Rev. Sci. Instrum. 63, 2994–2998 (1992).
[CrossRef]

Webb, P.

Webb, P. P.

Zappa, F.

A. Lacaita, P. A. Francese, F. Zappa, S. Cova, “Single-photon detection beyond 1 μm: performance of commercially available germanium photodiodes,” Appl. Opt. 33, 6902–6918 (1994).
[CrossRef] [PubMed]

F. Zappa, A. Lacaita, S. Cova, P. Webb, “Nanosecond single-photon timing with InGaAs/InP photodiodes,” Opt. Lett. 19, 846–848 (1994).
[CrossRef] [PubMed]

A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, “Recent advances in the detection of optical photons with silicon photodiodes,” Nucl. Instrum. Methods A 326, 290–294 (1993).
[CrossRef]

A. Lacaita, S. Cova, M. Ghioni, F. Zappa, “Single photon avalanche diodes with ultrafast pulse response free from slow tails,” IEEE Electron. Devices Lett. 14(7), 360–362 (1993).
[CrossRef]

A. Lacaita, S. Cova, A. Spinelli, F. Zappa, “Photon-assisted avalanche spreading in reach-through photodiodes,” Appl. Phys. Lett. 62, 606–608 (1993).
[CrossRef]

A. Lacaita, S. Cova, F. Zappa, P. A. Francese, “Subnanosecond single-photon timing with commercially available germanium photodiodes,” Opt. Lett. 18, 75–77 (1993).
[CrossRef] [PubMed]

F. Zappa, G. Ripamonti, A. Lacaita, S. Cova, C. Samori, “Tracking capabilities of SPADs for laser ranging,” in Proceedings of the Eighth International Workshop on Laser Ranging Instrumentation, J. J. Degnan, ed., NASA Conf. Publ. 3214 (NASA, Greenbelt, Md., 1992), pp. 5, 25–30.

Anal. Chem. (1)

S. A. Soper, Q. L. Mattingly, P. Vegunta, “Photon burst detection of single near-infrared fluorescent molecules,” Anal. Chem. 65, 740–747 (1993).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

A. Lacaita, S. Cova, A. Spinelli, F. Zappa, “Photon-assisted avalanche spreading in reach-through photodiodes,” Appl. Phys. Lett. 62, 606–608 (1993).
[CrossRef]

Appl. Phys. Lett. (5)

A. Lacaita, M. Mastrapasqua, M. Ghioni, S. Vanoli, “Observation of avalanche propagation by multiplication assisted diffusion in p–n junction,” Appl. Phys. Lett. 57, 489–491 (1990).
[CrossRef]

B. F. Levine, C. G. Bethea, “Room-temperature optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
[CrossRef]

B. F. Levine, C. C. Bethea, “10-MHz single-photon counting at 1.3 μm,” Appl. Phys. Lett. 44, 581–582 (1984).
[CrossRef]

B. F. Levine, C. G. Bethea, “Single-photon detection at 1.3 μm using a gated avalanche photodiode,” Appl. Phys. Lett. 44, 553–555 (1984).
[CrossRef]

A. Lacaita, A. Spinelli, S. Longhi, “Avalanche transients in shallow p–n junctions biased above breakdown,” Appl. Phys. Lett. 67, 2627–2730 (1995).
[CrossRef]

Chem. Phys. Lett. (1)

A. Andreoni, R. Cubeddu, “Photophysical properties of photofrin in different solvents,” Chem. Phys. Lett. 108, 141–144 (1984).
[CrossRef]

Electron. Lett. (1)

A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

Electron. Lett. (4)

A. Lacaita, M. Mastrapasqua, “Strong dependence of time resolution on detector diameter in single photon avalanche diodes,” Electron. Lett. 26, 2053–2054 (1990).
[CrossRef]

G. Ripamonti, S. Cova, “Optical time-domain reflectometry with centimetre resolution at 10−15 W sensitivity,” Electron. Lett. 22, 818–819 (1986).
[CrossRef]

P. D. Townsend, J. G. Rarity, P. R. Tapster, “Single photon interference in 10 km long optical fibre interferometer,” Electron. Lett. 29, 634–635 (1993).
[CrossRef]

B. F. Levine, C. G. Bethea, C. G. Campbell, “Near room-temperature single photon counting with an InGaAs avalanche photodiode,” Electron. Lett. 20, 596–598 (1984).
[CrossRef]

Exp. Astron. (1)

N. S. Nightingale, “A new silicon avalanche photodiode photon counting detector module for astronomy,” Exp. Astron. 1, 407–422 (1991).
[CrossRef]

IEEE Electron. Devices Lett. (1)

S. Cova, A. Lacaita, G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron. Devices Lett. 12, 685–687 (1991).
[CrossRef]

IEEE Electron. Devices Lett. (1)

A. Lacaita, S. Cova, M. Ghioni, F. Zappa, “Single photon avalanche diodes with ultrafast pulse response free from slow tails,” IEEE Electron. Devices Lett. 14(7), 360–362 (1993).
[CrossRef]

IEEE J. Lightwave Technol. (1)

G. Ripamonti, M. Ghioni, A. Lacaita, “No dead-space optical time-domain reflectometer,” IEEE J. Lightwave Technol. 8, 1278–1283 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Cova, A. Longoni, A. Adreoni, R. Cubeddu, “A semiconductor detector for measuring ultra-weak fluorescence decays with 70 ps FWHM resolution,” IEEE J. Quantum Electron. QE-19, 630–634 (1983).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

S. Cova, A. Longoni, G. Ripamonti, “Active-quenching and gating circuits for single-photon avalanche diodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982); presented at the IEEE 1981 Nuclear Science Symposium, San Francisco, Calif., 21–23 October 1981.
[CrossRef]

J. Appl. Phys. (1)

R. H. Haitz, “Mechanisms contributing to the noise pulse rate of avalanche diodes,” J. Appl. Phys. 36, 3123–3131 (1965).
[CrossRef]

J. Appl. Phys. (2)

R. H. Haitz, “Model for the electrical behavior of a micro-plasma,” J. Appl. Phys. 35, 1370–1376 (1964).
[CrossRef]

P. A. Ekstrom, “Triggered-avalanche detection of optical photons,” J. Appl. Phys. 52, 6974–6977 (1981).
[CrossRef]

Nucl. Instrum. Methods A (2)

T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high rate situations,” Nucl. Instrum. Methods A 326, 570–573 (1993); H. C. Fenker, T. O. Regan, J. Thomas, M. Wright, “Higher efficiency active quenching circuit for avalanche photodiodes,” ICFA Instrumentation Bulletin No. 10 (Fermilab, Batvaia, Ill., December1993), pp. 12–14.
[CrossRef]

A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, “Recent advances in the detection of optical photons with silicon photodiodes,” Nucl. Instrum. Methods A 326, 290–294 (1993).
[CrossRef]

Opt. Lett. (4)

Photochem. Photobiol. (1)

A. Andreoni, R. Cubeddu, C. N. Knox, T. G. Truscott, “Fluorescence lifetimes of angular furocoumarins,” Photochem. Photobiol. 46, 169–173 (1987).
[CrossRef] [PubMed]

Photon. Spectra (1)

B. K. Garside, “High resolution OTDR measurements,” Photon. Spectra 22(9), 79–86 (September1988).

Phys. Rev. Lett. (2)

J. G. Rarity, P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64, 2495–2498 (1990).
[CrossRef] [PubMed]

Y. H. Shih, C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
[CrossRef] [PubMed]

Phys. Status. Solid A (1)

S. Cova, M. Bertolaccini, C. Bussolati, “The measurement of luminescence waveforms by single photon techniques,” Phys. Status. Solid A 18, 11–62 (1973).
[CrossRef]

Rev. Sci. Instrum. (4)

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20 ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

T. A. Louis, G. Ripamonti, A. Lacaita, “Photoluminescence lifetime microscope spectrometer based on time-correlated single-photon counting with an avalanche diode detector,” Rev. Sci. Instrum. 61, 11–22 (1990).
[CrossRef]

L-Q. Li, L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64, 1524–1529 (1993).
[CrossRef]

S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

Rev. Sci. Instrum. (5)

M. Hoebel, J. Ricka, “Dead-time and afterpulsing correction in multiphoton timing with nonideal detectors,” Rev. Sci. Instrum. 65, 2326–2336 (1994).
[CrossRef]

M. Ghioni, G. Ripamonti, “Improving the performance of commercially-available Geiger-mode avalanche photodiodes,” Rev. Sci. Instrum. 62, 163–167 (1991).
[CrossRef]

G. S. Buller, J. S. Massa, A. C. Walker, “All solid-state microscope-based system for picosecond time-resolved photoluminescence measurements on II–VI semiconductors,” Rev. Sci. Instrum. 63, 2994–2998 (1992).
[CrossRef]

K. P. Ghiggino, M. R. Harris, P. G. Spizzirri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63, 2999–3002 (1992).
[CrossRef]

T. A. Louis, G. H. Schatz, P. Klein-Bolting, A. R. Holzwarth, G. Ripamonti, S. Cova, “Performance comparison of a single-photon avalanche diode with a microchannel-plate photomultiplier in time-correlated single-photon counting,” Rev. Sci. Instrum. 59, 1148–1152 (1988).
[CrossRef]

Other (14)

V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).

D. Bonaccini, S. Cova, M. Ghioni, R. Gheser, S. Esposito, G. Brusa, “Novel avalanche photodiode for adaptive optics,” in Adaptive Optics in Astronomy, M. Ealey, F. Merkle, eds., Proc. SPIE 2201, 650–657 (1994).

A. Lacaita, S. Longhi, A. Spinelli, “Limits to the timing performance of single photon avalanche diodes,” in Proceedings of the International Conference on Applications of Photonic Technology, G. A. Lampropulos, J. Chrostowski, R. M. Measures, eds. (Plenum, London, 1994).

I. Prochàzka, K. Hamal, B. Sopko, “Photodiode based detector package for centimeter satellite laser ranging,” in Proceedings of the Seventh International Workshop on Laser Ranging Instrumentation, C. Veillet, ed. (OCA-CERGA, Grasse, France, 1990), pp. 219–221.

F. Zappa, G. Ripamonti, A. Lacaita, S. Cova, C. Samori, “Tracking capabilities of SPADs for laser ranging,” in Proceedings of the Eighth International Workshop on Laser Ranging Instrumentation, J. J. Degnan, ed., NASA Conf. Publ. 3214 (NASA, Greenbelt, Md., 1992), pp. 5, 25–30.

G. Ripamonti, A. Lacaita, “Single-photon semiconductor photodiodes for distributed optical fiber sensors: state of the art and perspectives,” in Distributed and Multiplexed Fiber Optic Sensors II, J. P. Dakin, A. D. Kersey, eds., Proc. SPIE 1797, 38–49 (1993).

R. D. Evans, Atomic Nucleus (McGraw-Hill, New York, 1955), Chap. 28, pp. 785–793.

W. Nicholson, Nuclear Electronics (Wiley, New York, 1974), Appendix B5, pp. 473–376.

Ref. 54, pp. 259–260.

P. Antognetti, S. Cova, A. Longoni, “A study of the operation and performances of an avalanche diode as a single photon detector,” in Proceedings of the Second Ispra Nuclear Electronics Symposium, EURATOM Publ. EUR 537e (Office for Official Publications of the European Communities, Luxembourg, Belgium, 1975), pp. 453–456.

A. W. Lightstone, R. J. McIntyre, “Photon counting silicon avalanche photodiodes for photon correlation spectroscopy,” in Photon Correlation Techniques and Applications, Vol. 1 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1988), pp. 183–191.

“1.7-μm near infrared photomultiplier” (patent pending), preliminary data sheet E(500) (Electron Tube Center, Hamamatsu Photonics KK, Hamamatsu, Japan, March1994).

Ultrafast comparators AD96685, Linear Product Databook (Analog Devices, Inc., P.O. Box 9106, Norwood, Mass., 1988), pp. 3–17.

S. Cova, “Active quenching circuit for avalanche photodiodes,” U.S. patent4,963,727 (20October1990) (Italian patent 22367A/88); licensed for industrial production to Silena SpA, Milano, Italy.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Dependence of the photon detection efficiency of SPAD’s on excess bias voltage V E : (a) detection efficiency for photons at 830-nm wavelength versus V E for a thin SPAD developed in our laboratory6,34 (1-μm junction width, breakdown voltage V B = 16 V, 10-μm active area diameter); (b) detection efficiency versus wavelength with parameter V E for a thick SPAD, the EG&G Slik4 (25-μm junction width, breakdown voltage V B = 420 V, 250-μm active area diameter). Experimental data are from our laboratory.

Fig. 2
Fig. 2

Dependence of the FWHM resolution in photon timing on excess bias voltage V E : (a) thin-junction SPAD of Fig. 1(a) at room temperature (filled circles) and cooled to −65 °C (filled squares), (b) thick-junction SPAD of Fig. 1(b) at room temperature. Experimental data are from our laboratory.

Fig. 3
Fig. 3

Dependence of the dark-count rate on excess bias voltage V E : (a) thin SPAD of Fig. 1(a) at room temperature; the parameter quoted is the hold-off time after each avalanche pulse (see text); (b) thick SPAD of Fig. 1(b) operated at room temperature with 40-ns hold-off time; substantially equal results are obtained with longer hold off, indicating that trapping effects are almost negligible in this device. Experimental data are from our laboratory.

Fig. 4
Fig. 4

Basic PQC’s: (a) configuration with voltage-mode output, (b) configuration with current-mode output, (c) equivalent circuit of the current-mode output configuration. The avalanche signal is sensed by the comparator that produces a standard signal for pulse counting and timing.

Fig. 5
Fig. 5

Pulse waveforms of a SPAD of the type in Fig. 1 that operates in the PQC of Fig. 4(b), displayed on a digital oscilloscope: a, avalanche current I d ; b, diode voltage V d .

Fig. 6
Fig. 6

Retriggering of a SPAD in a PQC (same as in Fig. 5) during the recovery transient after an avalanche pulse, which is the first one displayed on the left-hand side. The a, diode current and b, voltage waveforms are displayed on a fast oscilloscope in a single-sweep mode. Experimental data are from our laboratory.

Fig. 7
Fig. 7

Avalanche current pulses of a SPAD in a PQC (same as in Fig. 5) that occur at different times during the recovery from a previous pulse, which triggers the oscilloscope scan and is the first one displayed on the left-hand side. Note that the pulse amplitude tracks the recovery diode voltage [compare with Fig. 6(b)]. The waveforms are displayed on a fast oscilloscope in a repeated-sweep mode. Experimental data are from our laboratory.

Fig. 8
Fig. 8

Effect of the counting rate on the FWHM resolution in photon timing with SPAD’s in PQC’s. The total counting rate is progressively increased by increasing the steady background light that falls on the detector. For comparison, the performance obtained with the same SPAD operating with an AQC is also reported: (a) thin SPAD device of Fig. 1(a) that operates at room temperature with excess bias V E = 2.5 V in a PQC with recovery time constant T r = 500 ns; (b) thick SPAD of Fig. 1(b) that operates with excess bias V E = 20 V in a PQC with T r = 500 ns and cooled to 0 °C to reduce the dark-count rate.

Fig. 9
Fig. 9

(a) Principle of active quenching: current–voltage I–V characteristic curve of the SPAD and switching load line (dashed lines) of the AQC controlled voltage source. The Q arrow denotes the quenching transition, the R arrow the reset transition. (b) Output pulses from an AQC designed for minimum dead time that operates with a SPAD of the type in Fig. 1, biased 0.9 V above the breakdown voltage, displayed on a fast oscilloscope at 5 ns/div. Experimental data are from our laboratory.

Fig. 10
Fig. 10

Simplified diagram of the basic AQC configuration with opposite quenching and sensing terminals of the SPAD. The network in the dotted box compensates the current pulses injected by the quenching pulse through the SPAD capacitance, thus avoiding circuit oscillation. The voltage waveforms drawn correspond to the circuit nodes marked with the same letter.

Fig. 11
Fig. 11

Simplified diagram of the basic AQC configuration with coincident quenching and sensing terminals of the SPAD. The network in the dotted box is employed to avoid (i) locking of the circuit in the triggered state by the quenching pulse, and (ii) circuit oscillation that is due to small overshoots and ringing of the quenching pulse. The voltage waveforms drawn correspond to the circuit nodes marked with the same letter.

Fig. 12
Fig. 12

PQC configurations for gated detector operation: (a) dc coupled gate input, (b) ac coupled gate input. The equivalent circuit of the SPAD [see Fig. 4(c)] must be taken into account in the circuit analysis.

Fig. 13
Fig. 13

Simplified diagram of the AQC with the passive reset reported in Ref. 32.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

I d ( t ) = V d ( t ) - V B R d = V ex ( t ) R d .
I f = V A - V B R d + R L V E R L ,
V f = V B + R d I f .
T q = ( C d + C s ) R d R L R d + R L ( C d + C s ) R d .
V q = V B + I q R d .
Q p c = ( V A - V q ) ( C d + C s ) V E ( C d + C s ) I f T r ,
T r = R L ( C d + C s ) .
V u = ( V A - V B - I q R d ) R s R L + R s V E R s R L I f R s .
V s V E R s R d ( 1 + C d C s ) I f R s R L R d ( 1 + C d C s ) V u R L R d ( 1 + C d C s ) .
E p d = 1 2 ( C d + C s ) ( V B + V E ) 2 - 1 2 ( C d + C s ) V B 2 = ( C d + C s ) V E ( V B + V E 2 ) ( C d + C s ) V E V B ,
E p d = Q p c ( V B + V E 2 ) Q p c V B .
T a c = T L + T a q .
( T a d ) min = 2 T L + T a q + T a r .
T w = T L + T a q 2 ,
Q a c = V E T w R d = I d max T w .
Q a c > Q p c             for T w > T q ,
Q a c > Q p c             for ( T L + T a q 2 ) > R d ( C d + C s ) .
E a d = Q a c ( V B + V E ) Q a c V B = V E V B T w / R d .
V g = V g C g ( C g + C d + C s ) .
C g 100 ( C d + C s ) .
T g r = R L ( C g + C d + C s ) R L C g .
g = T g r T g 100.
V n = V g b w ,
w 0.01 b 0.01.
T g q = ( C g + C d + C s ) R d R L R d + R L C g R d R L R d + R L .
T g q = T g r R d R d + R L = T g g R d R d + R L ,
h = T g q T g = g R d R d + R L .
T g q T g / 5 ,             that is , h .
R L 5 g R d 500 R d .
w T g T g r log e 100 1 5 g 0.002.
( 1 - P g ) V g g + P g s V g g ( 1 + R L R d ) = V g g ( 1 + P g R L R d ) .
V n = V g w b ( 1 + P g R L R d ) ,
w 0.01 b ( 1 + P g R L R d ) 0.01 ( 1 + P g R L R d ) .

Metrics