Abstract

I propose a new method that ensures efficient rotation-invariant pattern recognition in the presence of signal-dependent noise by combining the application of rotation-invariant correlation filters with preprocessing of the noisy input images. The preprocessing uses local suboptimal estimators derived from estimation theory and implies an a priori knowledge of a model describing the noise source. The image noise sources considered are speckle and film-grain noise. Four different metrics are used to analyze the correlation performance of the circular-harmonic filter, the phase-only circular-harmonic filter, and the binary phase-only circular-harmonic filter, with and without a preprocessing. Computer simulations show that signal-dependent noise can seriously degrade the performance of the phase-only circular-harmonic filter and the binary phase-only circular-harmonic filter. The most severe indication of correlation-performance degradation is the occurrence of false alarms in 15% to 20% of noise realizations of the correlation. Preprocessing increases the correlation-peak signal-to-noise ratio significantly and reduces the false-alarm probability by one to two orders of magnitude.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (39)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription