Abstract

Bacteriorhodopsin exhibits photoinduced changes in both absorption and refractive index at 633 nm. To explore the possibility of exploiting this property in constructing a photoaddressed spatial light modulator, we investigated the transmission property of a Fabry–Perot interferometer containing a bacteriorhodopsin thin film. Film was formed that had a phase shift of π/4 and sufficient interference fringe contrast for spatial light modulation. This establishes the possibility of constructing a spatial light modulator that features nonlinear input–output characteristics and can operate at moderate light intensities of the order of tens of milliwatts per centimeter square.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Tanguay, “Materials requirements for optical processing and computing devices,” Opt. Eng. 24, 2–18 (1985).
  2. A. M. Glass, “Optical materials,” Science 235, 1003–1009 (1987).
  3. U. Efron, “Spatial light modulators for optical information processing,” in 1986 International Optical Computing Conference, A. A. Friesem, E. Marom, J. Shamir, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 700, 132–145 (1986).
  4. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Novel hybrid optically bistable switch; the quantum well self-electro-optic effect device,” Appl. Phys. Lett. 45, 13–15 (1984).
  5. D. Armitage, J. I. Thackara, W. D. Eades, “Photoaddressed liquid crystal spatial light modulators,” Appl. Opt. 28, 4763–4771 (1989).
  6. W. Stoeckenius, R. H. Lozier, R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).
  7. B. Hess, D. Kuschmitz, M. Engelhard, “Synoptic views on the photochemical reaction cycle in bacteriorhodopsin,” in Information and Energy Transduction in Biological Membranes (Liss, New York, 1984), pp. 81–91.
  8. R. H. Lozier, A. Xie, J. Hofrichter, G. M. Clore, “Reversible steps in the bacteriorhodopsin photocycle,” Proc. Natl. Acad. Sci. USA 89, 3610–3614 (1992).
  9. D. Oesterhelt, B. Hess, “Reversible photolysis of the purple complex in the purple membrane of Halobacterium halobium,” Eur. J. Biochem. 37, 316–326 (1973).
  10. M. Yoshida, K. Ohno, Y. Takeuchi, Y. Kagawa, “Prolonged lifetime of the 410-nm intermediate of bacteriorhodopsin in the presence of guanidine hydrochloride,” Biochem. Biophys. Res. Commun. 75, 1111–1116 (1977).
  11. D. Oesterhelt, C. Bräuchle, N. Hampp, “Bacteriorhodopsin: a biological material for information processing,” Q. Rev. Biophys. 24, 425–478 (1991).
  12. Y. Shen, C. R. Safinya, K. S. Liang, A. F. Ruppert, K. J. Rothschild, “Stabilization of the membrane protein bacteriorhodopsin to 140 °C in two-dimensional films,” Nature 366, 48–50 (1993).
  13. J. Czege, L. Reinisch, “Photodestruction of bacteriorhodopsin,” Photochem. Photobiol. 53, 659–666 (1991).
  14. N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin wildtype and variant aspartate-96 → asparagine as reversible holographic media,” Biophys. J. 58, 83–93 (1990).
  15. N. Hampp, R. Thoma, D. Oesterhelt, C. Bräuchle, “Biological photochrome bacteriorhodopsin and its genetic variant Asp96 → Asn as media for optical pattern recognition,” Appl. Opt. 31, 1834–1841 (1992).
  16. R. Thoma, N. Hampp, C. Bräuchle, “Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering,” Opt. Lett. 16, 651–653 (1991).
  17. Q. W. Song, C. Zhang, R. Blumer, R. B. Gross, Z. Chen, R. R. Birge, “Chemically enhanced bacteriorhodopsin thin-film spatial light modulator,” Opt. Lett. 18, 1373–1375 (1993).
  18. O. Werner, B. Fischer, A. Lewis, “Strong self-defocusing effect and four-wave mixing in bacteriorhodopsin films,” Opt. Lett. 17, 241–243 (1992).
  19. S. Y. Zaitsev, N. M. Kozhevnikov, Y. O. Barmenkov, M. Y. Lipovskaya, “Kinetics of dynamic hologram recording in polymer films with immobilized bacteriorhodopsin,” Photochem. Photobiol. 55, 851–856 (1992).
  20. H. Takei, N. Shimizu, “Nonlinear optical properties of a bacteriorhodopsin film in a Fabry–Perot cavity,” Opt. Lett. 19, 248–250 (1994).
  21. V. V. Savransky, N. V. Tkachenko, V. I. Chikharev, “Refraction index changes in bacteriorhodopsin photocycle,” Biol. Membrane 4, 479–485 (1987).
  22. V. Y. Bazhenov, M. S. Soskin, V. B. Taranenko, M. V. Vasnetsov, “Biopolymers for real-time optical processing,” in Optical Processing and Computing, A. Arsenault, ed. (Academic, New York, 1989), pp. 103–144.
  23. N. N. Vsevolodov, A. B. Druzhko, T. V. Djukova, “Actual possibilities of bacteriorhodopsin application in optoelectronics,” in Molecular Electronics, F. T. Hong, ed. (Plenum, New York, 1989), pp. 381–384.
  24. D. Zeisel, N. Hampp, “Spectral relationships of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BRWT and the variant BRD96N,” J. Phys. Chem. 96, 7788–7792 (1992).
  25. G. Váró, “Dried oriented purple membrane samples,” Acta Biol. Acad. Sci. Hung. 32, 301–310 (1981).
  26. T. Furuno, K. Takimoto, T. Kouyama, A. Ikegami, H. Sasabe, “Photovoltaic properties of purple membrane Langmuir–Blodgett films,” Thin Solid Films 160, 145–151 (1988).
  27. N. A. Clark, K. J. Rothschild, D. A. Luippold, B. A. Simon, “Surface-induced lamellar orientation of multilayer membrane arrays: theoretical analysis and a new method with application to purple membrane fragments,” Biophys. J. 31, 65–96 (1980).
  28. J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, M. Whitehead, “All optical, high contrast absorptive modulation in an asymmetric Fabry–Perot étalon,” Appl. Phys. Lett. 58, 2877–2879 (1991).
  29. D. Haronian, A. Lewis, “Elements of a unique bacteriorhodopsin neural network architecture,” Appl. Opt. 30, 597–608 (1991).

1994 (1)

1993 (2)

Q. W. Song, C. Zhang, R. Blumer, R. B. Gross, Z. Chen, R. R. Birge, “Chemically enhanced bacteriorhodopsin thin-film spatial light modulator,” Opt. Lett. 18, 1373–1375 (1993).

Y. Shen, C. R. Safinya, K. S. Liang, A. F. Ruppert, K. J. Rothschild, “Stabilization of the membrane protein bacteriorhodopsin to 140 °C in two-dimensional films,” Nature 366, 48–50 (1993).

1992 (5)

R. H. Lozier, A. Xie, J. Hofrichter, G. M. Clore, “Reversible steps in the bacteriorhodopsin photocycle,” Proc. Natl. Acad. Sci. USA 89, 3610–3614 (1992).

S. Y. Zaitsev, N. M. Kozhevnikov, Y. O. Barmenkov, M. Y. Lipovskaya, “Kinetics of dynamic hologram recording in polymer films with immobilized bacteriorhodopsin,” Photochem. Photobiol. 55, 851–856 (1992).

D. Zeisel, N. Hampp, “Spectral relationships of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BRWT and the variant BRD96N,” J. Phys. Chem. 96, 7788–7792 (1992).

O. Werner, B. Fischer, A. Lewis, “Strong self-defocusing effect and four-wave mixing in bacteriorhodopsin films,” Opt. Lett. 17, 241–243 (1992).

N. Hampp, R. Thoma, D. Oesterhelt, C. Bräuchle, “Biological photochrome bacteriorhodopsin and its genetic variant Asp96 → Asn as media for optical pattern recognition,” Appl. Opt. 31, 1834–1841 (1992).

1991 (5)

D. Oesterhelt, C. Bräuchle, N. Hampp, “Bacteriorhodopsin: a biological material for information processing,” Q. Rev. Biophys. 24, 425–478 (1991).

J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, M. Whitehead, “All optical, high contrast absorptive modulation in an asymmetric Fabry–Perot étalon,” Appl. Phys. Lett. 58, 2877–2879 (1991).

D. Haronian, A. Lewis, “Elements of a unique bacteriorhodopsin neural network architecture,” Appl. Opt. 30, 597–608 (1991).

R. Thoma, N. Hampp, C. Bräuchle, “Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering,” Opt. Lett. 16, 651–653 (1991).

J. Czege, L. Reinisch, “Photodestruction of bacteriorhodopsin,” Photochem. Photobiol. 53, 659–666 (1991).

1990 (1)

N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin wildtype and variant aspartate-96 → asparagine as reversible holographic media,” Biophys. J. 58, 83–93 (1990).

1989 (1)

1988 (1)

T. Furuno, K. Takimoto, T. Kouyama, A. Ikegami, H. Sasabe, “Photovoltaic properties of purple membrane Langmuir–Blodgett films,” Thin Solid Films 160, 145–151 (1988).

1987 (2)

V. V. Savransky, N. V. Tkachenko, V. I. Chikharev, “Refraction index changes in bacteriorhodopsin photocycle,” Biol. Membrane 4, 479–485 (1987).

A. M. Glass, “Optical materials,” Science 235, 1003–1009 (1987).

1985 (1)

A. R. Tanguay, “Materials requirements for optical processing and computing devices,” Opt. Eng. 24, 2–18 (1985).

1984 (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Novel hybrid optically bistable switch; the quantum well self-electro-optic effect device,” Appl. Phys. Lett. 45, 13–15 (1984).

1981 (1)

G. Váró, “Dried oriented purple membrane samples,” Acta Biol. Acad. Sci. Hung. 32, 301–310 (1981).

1980 (1)

N. A. Clark, K. J. Rothschild, D. A. Luippold, B. A. Simon, “Surface-induced lamellar orientation of multilayer membrane arrays: theoretical analysis and a new method with application to purple membrane fragments,” Biophys. J. 31, 65–96 (1980).

1979 (1)

W. Stoeckenius, R. H. Lozier, R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).

1977 (1)

M. Yoshida, K. Ohno, Y. Takeuchi, Y. Kagawa, “Prolonged lifetime of the 410-nm intermediate of bacteriorhodopsin in the presence of guanidine hydrochloride,” Biochem. Biophys. Res. Commun. 75, 1111–1116 (1977).

1973 (1)

D. Oesterhelt, B. Hess, “Reversible photolysis of the purple complex in the purple membrane of Halobacterium halobium,” Eur. J. Biochem. 37, 316–326 (1973).

Armitage, D.

Barmenkov, Y. O.

S. Y. Zaitsev, N. M. Kozhevnikov, Y. O. Barmenkov, M. Y. Lipovskaya, “Kinetics of dynamic hologram recording in polymer films with immobilized bacteriorhodopsin,” Photochem. Photobiol. 55, 851–856 (1992).

Bazhenov, V. Y.

V. Y. Bazhenov, M. S. Soskin, V. B. Taranenko, M. V. Vasnetsov, “Biopolymers for real-time optical processing,” in Optical Processing and Computing, A. Arsenault, ed. (Academic, New York, 1989), pp. 103–144.

Birge, R. R.

Blumer, R.

Bogomolni, R. A.

W. Stoeckenius, R. H. Lozier, R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).

Bräuchle, C.

N. Hampp, R. Thoma, D. Oesterhelt, C. Bräuchle, “Biological photochrome bacteriorhodopsin and its genetic variant Asp96 → Asn as media for optical pattern recognition,” Appl. Opt. 31, 1834–1841 (1992).

R. Thoma, N. Hampp, C. Bräuchle, “Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering,” Opt. Lett. 16, 651–653 (1991).

D. Oesterhelt, C. Bräuchle, N. Hampp, “Bacteriorhodopsin: a biological material for information processing,” Q. Rev. Biophys. 24, 425–478 (1991).

N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin wildtype and variant aspartate-96 → asparagine as reversible holographic media,” Biophys. J. 58, 83–93 (1990).

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Novel hybrid optically bistable switch; the quantum well self-electro-optic effect device,” Appl. Phys. Lett. 45, 13–15 (1984).

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Novel hybrid optically bistable switch; the quantum well self-electro-optic effect device,” Appl. Phys. Lett. 45, 13–15 (1984).

Chen, Z.

Chikharev, V. I.

V. V. Savransky, N. V. Tkachenko, V. I. Chikharev, “Refraction index changes in bacteriorhodopsin photocycle,” Biol. Membrane 4, 479–485 (1987).

Clark, N. A.

N. A. Clark, K. J. Rothschild, D. A. Luippold, B. A. Simon, “Surface-induced lamellar orientation of multilayer membrane arrays: theoretical analysis and a new method with application to purple membrane fragments,” Biophys. J. 31, 65–96 (1980).

Clore, G. M.

R. H. Lozier, A. Xie, J. Hofrichter, G. M. Clore, “Reversible steps in the bacteriorhodopsin photocycle,” Proc. Natl. Acad. Sci. USA 89, 3610–3614 (1992).

Czege, J.

J. Czege, L. Reinisch, “Photodestruction of bacteriorhodopsin,” Photochem. Photobiol. 53, 659–666 (1991).

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Novel hybrid optically bistable switch; the quantum well self-electro-optic effect device,” Appl. Phys. Lett. 45, 13–15 (1984).

Djukova, T. V.

N. N. Vsevolodov, A. B. Druzhko, T. V. Djukova, “Actual possibilities of bacteriorhodopsin application in optoelectronics,” in Molecular Electronics, F. T. Hong, ed. (Plenum, New York, 1989), pp. 381–384.

Druzhko, A. B.

N. N. Vsevolodov, A. B. Druzhko, T. V. Djukova, “Actual possibilities of bacteriorhodopsin application in optoelectronics,” in Molecular Electronics, F. T. Hong, ed. (Plenum, New York, 1989), pp. 381–384.

Eades, W. D.

Efron, U.

U. Efron, “Spatial light modulators for optical information processing,” in 1986 International Optical Computing Conference, A. A. Friesem, E. Marom, J. Shamir, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 700, 132–145 (1986).

Engelhard, M.

B. Hess, D. Kuschmitz, M. Engelhard, “Synoptic views on the photochemical reaction cycle in bacteriorhodopsin,” in Information and Energy Transduction in Biological Membranes (Liss, New York, 1984), pp. 81–91.

Fischer, B.

Furuno, T.

T. Furuno, K. Takimoto, T. Kouyama, A. Ikegami, H. Sasabe, “Photovoltaic properties of purple membrane Langmuir–Blodgett films,” Thin Solid Films 160, 145–151 (1988).

Glass, A. M.

A. M. Glass, “Optical materials,” Science 235, 1003–1009 (1987).

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Novel hybrid optically bistable switch; the quantum well self-electro-optic effect device,” Appl. Phys. Lett. 45, 13–15 (1984).

Gross, R. B.

Hampp, N.

N. Hampp, R. Thoma, D. Oesterhelt, C. Bräuchle, “Biological photochrome bacteriorhodopsin and its genetic variant Asp96 → Asn as media for optical pattern recognition,” Appl. Opt. 31, 1834–1841 (1992).

D. Zeisel, N. Hampp, “Spectral relationships of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BRWT and the variant BRD96N,” J. Phys. Chem. 96, 7788–7792 (1992).

D. Oesterhelt, C. Bräuchle, N. Hampp, “Bacteriorhodopsin: a biological material for information processing,” Q. Rev. Biophys. 24, 425–478 (1991).

R. Thoma, N. Hampp, C. Bräuchle, “Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering,” Opt. Lett. 16, 651–653 (1991).

N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin wildtype and variant aspartate-96 → asparagine as reversible holographic media,” Biophys. J. 58, 83–93 (1990).

Haronian, D.

Heffernan, J. F.

J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, M. Whitehead, “All optical, high contrast absorptive modulation in an asymmetric Fabry–Perot étalon,” Appl. Phys. Lett. 58, 2877–2879 (1991).

Hegarty, J.

J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, M. Whitehead, “All optical, high contrast absorptive modulation in an asymmetric Fabry–Perot étalon,” Appl. Phys. Lett. 58, 2877–2879 (1991).

Hess, B.

D. Oesterhelt, B. Hess, “Reversible photolysis of the purple complex in the purple membrane of Halobacterium halobium,” Eur. J. Biochem. 37, 316–326 (1973).

B. Hess, D. Kuschmitz, M. Engelhard, “Synoptic views on the photochemical reaction cycle in bacteriorhodopsin,” in Information and Energy Transduction in Biological Membranes (Liss, New York, 1984), pp. 81–91.

Hofrichter, J.

R. H. Lozier, A. Xie, J. Hofrichter, G. M. Clore, “Reversible steps in the bacteriorhodopsin photocycle,” Proc. Natl. Acad. Sci. USA 89, 3610–3614 (1992).

Ikegami, A.

T. Furuno, K. Takimoto, T. Kouyama, A. Ikegami, H. Sasabe, “Photovoltaic properties of purple membrane Langmuir–Blodgett films,” Thin Solid Films 160, 145–151 (1988).

Kagawa, Y.

M. Yoshida, K. Ohno, Y. Takeuchi, Y. Kagawa, “Prolonged lifetime of the 410-nm intermediate of bacteriorhodopsin in the presence of guanidine hydrochloride,” Biochem. Biophys. Res. Commun. 75, 1111–1116 (1977).

Kouyama, T.

T. Furuno, K. Takimoto, T. Kouyama, A. Ikegami, H. Sasabe, “Photovoltaic properties of purple membrane Langmuir–Blodgett films,” Thin Solid Films 160, 145–151 (1988).

Kozhevnikov, N. M.

S. Y. Zaitsev, N. M. Kozhevnikov, Y. O. Barmenkov, M. Y. Lipovskaya, “Kinetics of dynamic hologram recording in polymer films with immobilized bacteriorhodopsin,” Photochem. Photobiol. 55, 851–856 (1992).

Kuschmitz, D.

B. Hess, D. Kuschmitz, M. Engelhard, “Synoptic views on the photochemical reaction cycle in bacteriorhodopsin,” in Information and Energy Transduction in Biological Membranes (Liss, New York, 1984), pp. 81–91.

Lewis, A.

Liang, K. S.

Y. Shen, C. R. Safinya, K. S. Liang, A. F. Ruppert, K. J. Rothschild, “Stabilization of the membrane protein bacteriorhodopsin to 140 °C in two-dimensional films,” Nature 366, 48–50 (1993).

Lipovskaya, M. Y.

S. Y. Zaitsev, N. M. Kozhevnikov, Y. O. Barmenkov, M. Y. Lipovskaya, “Kinetics of dynamic hologram recording in polymer films with immobilized bacteriorhodopsin,” Photochem. Photobiol. 55, 851–856 (1992).

Lozier, R. H.

R. H. Lozier, A. Xie, J. Hofrichter, G. M. Clore, “Reversible steps in the bacteriorhodopsin photocycle,” Proc. Natl. Acad. Sci. USA 89, 3610–3614 (1992).

W. Stoeckenius, R. H. Lozier, R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).

Luippold, D. A.

N. A. Clark, K. J. Rothschild, D. A. Luippold, B. A. Simon, “Surface-induced lamellar orientation of multilayer membrane arrays: theoretical analysis and a new method with application to purple membrane fragments,” Biophys. J. 31, 65–96 (1980).

Miller, D. A. B.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Novel hybrid optically bistable switch; the quantum well self-electro-optic effect device,” Appl. Phys. Lett. 45, 13–15 (1984).

Moloney, M. H.

J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, M. Whitehead, “All optical, high contrast absorptive modulation in an asymmetric Fabry–Perot étalon,” Appl. Phys. Lett. 58, 2877–2879 (1991).

Oesterhelt, D.

N. Hampp, R. Thoma, D. Oesterhelt, C. Bräuchle, “Biological photochrome bacteriorhodopsin and its genetic variant Asp96 → Asn as media for optical pattern recognition,” Appl. Opt. 31, 1834–1841 (1992).

D. Oesterhelt, C. Bräuchle, N. Hampp, “Bacteriorhodopsin: a biological material for information processing,” Q. Rev. Biophys. 24, 425–478 (1991).

N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin wildtype and variant aspartate-96 → asparagine as reversible holographic media,” Biophys. J. 58, 83–93 (1990).

D. Oesterhelt, B. Hess, “Reversible photolysis of the purple complex in the purple membrane of Halobacterium halobium,” Eur. J. Biochem. 37, 316–326 (1973).

Ohno, K.

M. Yoshida, K. Ohno, Y. Takeuchi, Y. Kagawa, “Prolonged lifetime of the 410-nm intermediate of bacteriorhodopsin in the presence of guanidine hydrochloride,” Biochem. Biophys. Res. Commun. 75, 1111–1116 (1977).

Reinisch, L.

J. Czege, L. Reinisch, “Photodestruction of bacteriorhodopsin,” Photochem. Photobiol. 53, 659–666 (1991).

Roberts, J. S.

J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, M. Whitehead, “All optical, high contrast absorptive modulation in an asymmetric Fabry–Perot étalon,” Appl. Phys. Lett. 58, 2877–2879 (1991).

Rothschild, K. J.

Y. Shen, C. R. Safinya, K. S. Liang, A. F. Ruppert, K. J. Rothschild, “Stabilization of the membrane protein bacteriorhodopsin to 140 °C in two-dimensional films,” Nature 366, 48–50 (1993).

N. A. Clark, K. J. Rothschild, D. A. Luippold, B. A. Simon, “Surface-induced lamellar orientation of multilayer membrane arrays: theoretical analysis and a new method with application to purple membrane fragments,” Biophys. J. 31, 65–96 (1980).

Ruppert, A. F.

Y. Shen, C. R. Safinya, K. S. Liang, A. F. Ruppert, K. J. Rothschild, “Stabilization of the membrane protein bacteriorhodopsin to 140 °C in two-dimensional films,” Nature 366, 48–50 (1993).

Safinya, C. R.

Y. Shen, C. R. Safinya, K. S. Liang, A. F. Ruppert, K. J. Rothschild, “Stabilization of the membrane protein bacteriorhodopsin to 140 °C in two-dimensional films,” Nature 366, 48–50 (1993).

Sasabe, H.

T. Furuno, K. Takimoto, T. Kouyama, A. Ikegami, H. Sasabe, “Photovoltaic properties of purple membrane Langmuir–Blodgett films,” Thin Solid Films 160, 145–151 (1988).

Savransky, V. V.

V. V. Savransky, N. V. Tkachenko, V. I. Chikharev, “Refraction index changes in bacteriorhodopsin photocycle,” Biol. Membrane 4, 479–485 (1987).

Shen, Y.

Y. Shen, C. R. Safinya, K. S. Liang, A. F. Ruppert, K. J. Rothschild, “Stabilization of the membrane protein bacteriorhodopsin to 140 °C in two-dimensional films,” Nature 366, 48–50 (1993).

Shimizu, N.

Simon, B. A.

N. A. Clark, K. J. Rothschild, D. A. Luippold, B. A. Simon, “Surface-induced lamellar orientation of multilayer membrane arrays: theoretical analysis and a new method with application to purple membrane fragments,” Biophys. J. 31, 65–96 (1980).

Song, Q. W.

Soskin, M. S.

V. Y. Bazhenov, M. S. Soskin, V. B. Taranenko, M. V. Vasnetsov, “Biopolymers for real-time optical processing,” in Optical Processing and Computing, A. Arsenault, ed. (Academic, New York, 1989), pp. 103–144.

Stoeckenius, W.

W. Stoeckenius, R. H. Lozier, R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).

Takei, H.

Takeuchi, Y.

M. Yoshida, K. Ohno, Y. Takeuchi, Y. Kagawa, “Prolonged lifetime of the 410-nm intermediate of bacteriorhodopsin in the presence of guanidine hydrochloride,” Biochem. Biophys. Res. Commun. 75, 1111–1116 (1977).

Takimoto, K.

T. Furuno, K. Takimoto, T. Kouyama, A. Ikegami, H. Sasabe, “Photovoltaic properties of purple membrane Langmuir–Blodgett films,” Thin Solid Films 160, 145–151 (1988).

Tanguay, A. R.

A. R. Tanguay, “Materials requirements for optical processing and computing devices,” Opt. Eng. 24, 2–18 (1985).

Taranenko, V. B.

V. Y. Bazhenov, M. S. Soskin, V. B. Taranenko, M. V. Vasnetsov, “Biopolymers for real-time optical processing,” in Optical Processing and Computing, A. Arsenault, ed. (Academic, New York, 1989), pp. 103–144.

Thackara, J. I.

Thoma, R.

Tkachenko, N. V.

V. V. Savransky, N. V. Tkachenko, V. I. Chikharev, “Refraction index changes in bacteriorhodopsin photocycle,” Biol. Membrane 4, 479–485 (1987).

Váró, G.

G. Váró, “Dried oriented purple membrane samples,” Acta Biol. Acad. Sci. Hung. 32, 301–310 (1981).

Vasnetsov, M. V.

V. Y. Bazhenov, M. S. Soskin, V. B. Taranenko, M. V. Vasnetsov, “Biopolymers for real-time optical processing,” in Optical Processing and Computing, A. Arsenault, ed. (Academic, New York, 1989), pp. 103–144.

Vsevolodov, N. N.

N. N. Vsevolodov, A. B. Druzhko, T. V. Djukova, “Actual possibilities of bacteriorhodopsin application in optoelectronics,” in Molecular Electronics, F. T. Hong, ed. (Plenum, New York, 1989), pp. 381–384.

Werner, O.

Whitehead, M.

J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, M. Whitehead, “All optical, high contrast absorptive modulation in an asymmetric Fabry–Perot étalon,” Appl. Phys. Lett. 58, 2877–2879 (1991).

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Novel hybrid optically bistable switch; the quantum well self-electro-optic effect device,” Appl. Phys. Lett. 45, 13–15 (1984).

Wood, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Novel hybrid optically bistable switch; the quantum well self-electro-optic effect device,” Appl. Phys. Lett. 45, 13–15 (1984).

Xie, A.

R. H. Lozier, A. Xie, J. Hofrichter, G. M. Clore, “Reversible steps in the bacteriorhodopsin photocycle,” Proc. Natl. Acad. Sci. USA 89, 3610–3614 (1992).

Yoshida, M.

M. Yoshida, K. Ohno, Y. Takeuchi, Y. Kagawa, “Prolonged lifetime of the 410-nm intermediate of bacteriorhodopsin in the presence of guanidine hydrochloride,” Biochem. Biophys. Res. Commun. 75, 1111–1116 (1977).

Zaitsev, S. Y.

S. Y. Zaitsev, N. M. Kozhevnikov, Y. O. Barmenkov, M. Y. Lipovskaya, “Kinetics of dynamic hologram recording in polymer films with immobilized bacteriorhodopsin,” Photochem. Photobiol. 55, 851–856 (1992).

Zeisel, D.

D. Zeisel, N. Hampp, “Spectral relationships of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BRWT and the variant BRD96N,” J. Phys. Chem. 96, 7788–7792 (1992).

Zhang, C.

Acta Biol. Acad. Sci. Hung. (1)

G. Váró, “Dried oriented purple membrane samples,” Acta Biol. Acad. Sci. Hung. 32, 301–310 (1981).

Appl. Opt. (3)

Appl. Phys. Lett. (2)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Novel hybrid optically bistable switch; the quantum well self-electro-optic effect device,” Appl. Phys. Lett. 45, 13–15 (1984).

J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, M. Whitehead, “All optical, high contrast absorptive modulation in an asymmetric Fabry–Perot étalon,” Appl. Phys. Lett. 58, 2877–2879 (1991).

Biochem. Biophys. Res. Commun. (1)

M. Yoshida, K. Ohno, Y. Takeuchi, Y. Kagawa, “Prolonged lifetime of the 410-nm intermediate of bacteriorhodopsin in the presence of guanidine hydrochloride,” Biochem. Biophys. Res. Commun. 75, 1111–1116 (1977).

Biochim. Biophys. Acta (1)

W. Stoeckenius, R. H. Lozier, R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).

Biol. Membrane (1)

V. V. Savransky, N. V. Tkachenko, V. I. Chikharev, “Refraction index changes in bacteriorhodopsin photocycle,” Biol. Membrane 4, 479–485 (1987).

Biophys. J. (2)

N. A. Clark, K. J. Rothschild, D. A. Luippold, B. A. Simon, “Surface-induced lamellar orientation of multilayer membrane arrays: theoretical analysis and a new method with application to purple membrane fragments,” Biophys. J. 31, 65–96 (1980).

N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin wildtype and variant aspartate-96 → asparagine as reversible holographic media,” Biophys. J. 58, 83–93 (1990).

Eur. J. Biochem. (1)

D. Oesterhelt, B. Hess, “Reversible photolysis of the purple complex in the purple membrane of Halobacterium halobium,” Eur. J. Biochem. 37, 316–326 (1973).

J. Phys. Chem. (1)

D. Zeisel, N. Hampp, “Spectral relationships of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BRWT and the variant BRD96N,” J. Phys. Chem. 96, 7788–7792 (1992).

Nature (1)

Y. Shen, C. R. Safinya, K. S. Liang, A. F. Ruppert, K. J. Rothschild, “Stabilization of the membrane protein bacteriorhodopsin to 140 °C in two-dimensional films,” Nature 366, 48–50 (1993).

Opt. Eng. (1)

A. R. Tanguay, “Materials requirements for optical processing and computing devices,” Opt. Eng. 24, 2–18 (1985).

Opt. Lett. (4)

Photochem. Photobiol. (2)

S. Y. Zaitsev, N. M. Kozhevnikov, Y. O. Barmenkov, M. Y. Lipovskaya, “Kinetics of dynamic hologram recording in polymer films with immobilized bacteriorhodopsin,” Photochem. Photobiol. 55, 851–856 (1992).

J. Czege, L. Reinisch, “Photodestruction of bacteriorhodopsin,” Photochem. Photobiol. 53, 659–666 (1991).

Proc. Natl. Acad. Sci. USA (1)

R. H. Lozier, A. Xie, J. Hofrichter, G. M. Clore, “Reversible steps in the bacteriorhodopsin photocycle,” Proc. Natl. Acad. Sci. USA 89, 3610–3614 (1992).

Q. Rev. Biophys. (1)

D. Oesterhelt, C. Bräuchle, N. Hampp, “Bacteriorhodopsin: a biological material for information processing,” Q. Rev. Biophys. 24, 425–478 (1991).

Science (1)

A. M. Glass, “Optical materials,” Science 235, 1003–1009 (1987).

Thin Solid Films (1)

T. Furuno, K. Takimoto, T. Kouyama, A. Ikegami, H. Sasabe, “Photovoltaic properties of purple membrane Langmuir–Blodgett films,” Thin Solid Films 160, 145–151 (1988).

Other (4)

V. Y. Bazhenov, M. S. Soskin, V. B. Taranenko, M. V. Vasnetsov, “Biopolymers for real-time optical processing,” in Optical Processing and Computing, A. Arsenault, ed. (Academic, New York, 1989), pp. 103–144.

N. N. Vsevolodov, A. B. Druzhko, T. V. Djukova, “Actual possibilities of bacteriorhodopsin application in optoelectronics,” in Molecular Electronics, F. T. Hong, ed. (Plenum, New York, 1989), pp. 381–384.

U. Efron, “Spatial light modulators for optical information processing,” in 1986 International Optical Computing Conference, A. A. Friesem, E. Marom, J. Shamir, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 700, 132–145 (1986).

B. Hess, D. Kuschmitz, M. Engelhard, “Synoptic views on the photochemical reaction cycle in bacteriorhodopsin,” in Information and Energy Transduction in Biological Membranes (Liss, New York, 1984), pp. 81–91.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Absorption spectrum of a solid dry bR film.

Fig. 2
Fig. 2

Schematic diagram of the experimental setup.

Fig. 3
Fig. 3

Interference fringes generated by 633-nm irradiation and their intensity profiles.

Fig. 4
Fig. 4

Transmission-characteristic curves of the Fabry–Perot cavity containing bR films of different optical densities.

Fig. 5
Fig. 5

Shift in interference fringes accompanying the B to M photochemical transition: (a) before and (b) after transition in the oblong region.

Fig. 6
Fig. 6

Modified transmission-characteristic curves of the Fabry–Perot cavity containing bR film in the M state.

Fig. 7
Fig. 7

Dependence of the maximum and the minimum transmission values on the photochemical state of the bR film.

Fig. 8
Fig. 8

Amplitude-modulation characteristics of the cavity containing film 3.

Fig. 9
Fig. 9

Spatial amplitude modulation by the cavity containing film 3.

Tables (1)

Tables Icon

Table 1 Experimental and Computed Values of Maximum and Minimum Transmissions of the Cavity Containing Films of Different Optical Densities

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = [ k ( 1 - R - A ) 2 ] / [ 1 + ( k r ) 2 - 2 k R cos ( D ) ] D = ( 4 n l π / λ ) + φ ,

Metrics