Abstract

A noninvasive method to measure the optical properties of a diffusing and absorbing medium is described. Based on the spatially resolved measurement of diffuse reflectance at the sample surface, this method is particularly suitable for investigating the in vivo optical properties of biological tissues endoscopically in a clinical context. The sensitivity of the measurement is discussed, and two optical probes for two different clinical applications are presented. Preliminary measurements are performed on a nonbiological medium, which illustrate the possibilities of the proposed method. Finally, we report on in vivo measurements of the optical properties of the human esophageal wall at 630 nm.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. van den Bergh, “Photodynamic therapy and photodetection of early cancer in the upper aerodigestive tract, the tracheobronchial tree, the oesophagus and the urinary bladder,” in Proceedings of the First International Symposium on Hadrontherapy, U. Amaldi, B. Larsson, eds. (Elsevier Science, New York, 1994), pp. 577–621.
  2. Y. Hayata, C. Konaka, “Photodynamic therapy of neoplastic disease,” in Photodynamic Therapy of Neoplastic Disease, D. Kessel, ed. (CRC Press, Boca Raton, Fla., 1990), Vol. 1, pp. 43–64.
  3. W. B. Henderson, T. J. Dougherty, eds., Photodynamic Therapy: Basic Principles and Applications (Dekker, New York, 1992), Sec. III, pp. 219–331.
  4. B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986).
    [CrossRef] [PubMed]
  5. R. Bays, G. Wagnières, D. Braichotte, H. van den Bergh, P. Monnier, J.-F. Savary, “Tissue optics and dosimetry for photodynamic cancer therapy in the esophagus,” in Photodynamic Therapy of Cancer, G. Jori, J. Moan, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2078, 13–26 (1993).
  6. R. Bays, G. Wagnières, D. Robert, J.-F. Savary, P. Monnier, H. van den Bergh, “Light dosimetry for photodynamic therapy in the esophagus,” submitted to Lasers Surg. Med.
    [PubMed]
  7. G. Wagnières, Ph. Monnier, M. Savary, P. Cornaz, A. Châtelain, H. van den Bergh, “Photodynamic therapy of early cancer in the upper aerodigestive tract and bronchi: instrumentation and clinical results,” in Future Directions and Applications in Photodynamic Therapy, C. J. Gomer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.IS06, 249–271 (1990).
  8. P. Lenz, “Light distributor for endoscopic photochemo-therapy,” in Future Trends in Biomedical Applications of Lasers, L. O. Svaasand, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1525, 192–195 (1991).
  9. W. Beyer, R. Baumgartner, C. Ell, A. Heinze, D. Jocham, R. Sroka, H. Stepp, E. Unsöld, “Uniform light distribution in hollow organs by means of backscattering layers,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1201, 298–303 (1990).
  10. W. M. Star, H. P. A. Marijnissen, H. Jansen, M. Keijzer, M. J. C. van Gemert, “Light dosimetry for photodynamic therapy by whole bladder wall irradiation,” Photochem. Photobiol. 46, 619–624 (1987).
    [CrossRef] [PubMed]
  11. A. Ishimaru, “Diffusion approximation,” in Wave Propagation and Scattering in Random Media, Vol. 1 (Academic, New York, 1978), Chap. 9, pp. 175–186.
  12. L. Reynolds, C. Johnson, A. Ishimaru, “Diffuse reflectance from a finite blood medium: application to the modeling of fiber optic catheters,” Appl. Opt. 15, 2059–2067 (1976).
    [CrossRef] [PubMed]
  13. R. Graaf, J. G. Aarnoudse, F. F. M. de Mul, H. W. Jentink, “Light propagation parameters for anisotropically scattering media based on a rigorous solution of the transport equation,” Appl. Opt. 28, 2273–2279 (1989).
    [CrossRef]
  14. R. Graaff, J. G. Aarnoudse, F. F. M. de Mul, H. W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–252 (1993).
    [CrossRef]
  15. G. Yoon, S. A. Prahl, A. J. Welch, “Accuracies of the diffusion approximation and its similarity relations for laser irradiated biological media,” Appl. Opt. 28, 2250–2255 (1989).
    [CrossRef] [PubMed]
  16. S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
    [CrossRef] [PubMed]
  17. M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
    [CrossRef] [PubMed]
  18. B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
    [CrossRef] [PubMed]
  19. L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
    [CrossRef]
  20. H. C. van de Hulst, Light Scattering by Small Particles, (Dover, New York, 1981), Chap. 7, pp. 85–102.
  21. F. P. Bolin, L. E. Preuss, R. C. Taylor, R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989).
    [CrossRef] [PubMed]
  22. S. A. Prahl, I. A. Vitkin, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
    [CrossRef] [PubMed]
  23. A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” in Laser–Tissue Interaction IV, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1882, 86–101 (1993).
  24. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  25. M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
    [CrossRef] [PubMed]
  26. J. Langerholc, “Beam broadening in dense scattering media,” Appl. Opt. 21, 1593–1598 (1982).
    [CrossRef] [PubMed]
  27. R. A. J. Groenhuis, H. A. Ferwerda, J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory,” Appl. Opt. 22, 2456–2462 (1983).
    [CrossRef] [PubMed]
  28. R. A. J. Groenhuis, J. J. Ten Bosch, H. A. Ferwerda, “Scattering and absorption of turbid materials determined from reflection measurements. 2: Measuring method and calibration,” Appl. Opt. 22, 2463–2467 (1983).
    [CrossRef] [PubMed]
  29. B. C. Wilson, M. S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in tissue in vivo,” in Future Directions and Applications in Photodynamic Therapy, C. J. Gomer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.IS06, 219–231 (1990).
  30. R. Bays, Ph. Monnier, G. Wagnières, D. Braichotte, H. van den Bergh, C. W. Burckhardt, “Clinical optical dose measurement for PDT: invasive and non-invasive techniques,” in Future Trends in Biomedical Applications of Lasers, L. O. Svaasand, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1525, 397–408 (1991).
  31. M. S. Patterson, E. Schwartz, B. C. Wilson, “Quantitative reflectance spectrophotometry for the non-invasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1065, 115–122 (1989).
  32. T. J. Farrel, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [CrossRef]
  33. T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurement,” Phys. Med. Biol. 37, 2281–2286 (1992).
    [CrossRef] [PubMed]
  34. C. Wai-Fung, S. A. Prahl, A. J. Welch, “Review of optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  35. W. G. Egan, T. W. Hilgeman, Optical Properties of Inhomo-geneous Materials (Academic, New York, 1979), Chap. 2, p. 21.
  36. R. Bays, G. Wagnières, D. Robert, J. Mizeret, D. Braichotte, J.-F. Savary, Ph. Monnier, H. van den Bergh, “Clinical measurements of tissue optical properties in the esophagus and the oral cavity,” in Fifth International Photodynamic Association Biennial Meeting, D. A. Cortese, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2371, 388–395 (1994).

1993 (1)

R. Graaff, J. G. Aarnoudse, F. F. M. de Mul, H. W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–252 (1993).
[CrossRef]

1992 (3)

S. A. Prahl, I. A. Vitkin, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
[CrossRef] [PubMed]

T. J. Farrel, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurement,” Phys. Med. Biol. 37, 2281–2286 (1992).
[CrossRef] [PubMed]

1991 (1)

1990 (1)

C. Wai-Fung, S. A. Prahl, A. J. Welch, “Review of optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1989 (6)

1987 (1)

W. M. Star, H. P. A. Marijnissen, H. Jansen, M. Keijzer, M. J. C. van Gemert, “Light dosimetry for photodynamic therapy by whole bladder wall irradiation,” Photochem. Photobiol. 46, 619–624 (1987).
[CrossRef] [PubMed]

1986 (1)

B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986).
[CrossRef] [PubMed]

1983 (3)

1982 (1)

1976 (1)

1941 (1)

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Aarnoudse, J. G.

R. Graaff, J. G. Aarnoudse, F. F. M. de Mul, H. W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–252 (1993).
[CrossRef]

R. Graaf, J. G. Aarnoudse, F. F. M. de Mul, H. W. Jentink, “Light propagation parameters for anisotropically scattering media based on a rigorous solution of the transport equation,” Appl. Opt. 28, 2273–2279 (1989).
[CrossRef]

Adam, G.

B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Baumgartner, R.

W. Beyer, R. Baumgartner, C. Ell, A. Heinze, D. Jocham, R. Sroka, H. Stepp, E. Unsöld, “Uniform light distribution in hollow organs by means of backscattering layers,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1201, 298–303 (1990).

Bays, R.

R. Bays, G. Wagnières, D. Robert, J. Mizeret, D. Braichotte, J.-F. Savary, Ph. Monnier, H. van den Bergh, “Clinical measurements of tissue optical properties in the esophagus and the oral cavity,” in Fifth International Photodynamic Association Biennial Meeting, D. A. Cortese, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2371, 388–395 (1994).

R. Bays, Ph. Monnier, G. Wagnières, D. Braichotte, H. van den Bergh, C. W. Burckhardt, “Clinical optical dose measurement for PDT: invasive and non-invasive techniques,” in Future Trends in Biomedical Applications of Lasers, L. O. Svaasand, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1525, 397–408 (1991).

R. Bays, G. Wagnières, D. Braichotte, H. van den Bergh, P. Monnier, J.-F. Savary, “Tissue optics and dosimetry for photodynamic cancer therapy in the esophagus,” in Photodynamic Therapy of Cancer, G. Jori, J. Moan, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2078, 13–26 (1993).

R. Bays, G. Wagnières, D. Robert, J.-F. Savary, P. Monnier, H. van den Bergh, “Light dosimetry for photodynamic therapy in the esophagus,” submitted to Lasers Surg. Med.
[PubMed]

Berndt, K. W.

Beyer, W.

W. Beyer, R. Baumgartner, C. Ell, A. Heinze, D. Jocham, R. Sroka, H. Stepp, E. Unsöld, “Uniform light distribution in hollow organs by means of backscattering layers,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1201, 298–303 (1990).

Bolin, F. P.

Braichotte, D.

R. Bays, G. Wagnières, D. Robert, J. Mizeret, D. Braichotte, J.-F. Savary, Ph. Monnier, H. van den Bergh, “Clinical measurements of tissue optical properties in the esophagus and the oral cavity,” in Fifth International Photodynamic Association Biennial Meeting, D. A. Cortese, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2371, 388–395 (1994).

R. Bays, G. Wagnières, D. Braichotte, H. van den Bergh, P. Monnier, J.-F. Savary, “Tissue optics and dosimetry for photodynamic cancer therapy in the esophagus,” in Photodynamic Therapy of Cancer, G. Jori, J. Moan, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2078, 13–26 (1993).

R. Bays, Ph. Monnier, G. Wagnières, D. Braichotte, H. van den Bergh, C. W. Burckhardt, “Clinical optical dose measurement for PDT: invasive and non-invasive techniques,” in Future Trends in Biomedical Applications of Lasers, L. O. Svaasand, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1525, 397–408 (1991).

Burckhardt, C. W.

R. Bays, Ph. Monnier, G. Wagnières, D. Braichotte, H. van den Bergh, C. W. Burckhardt, “Clinical optical dose measurement for PDT: invasive and non-invasive techniques,” in Future Trends in Biomedical Applications of Lasers, L. O. Svaasand, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1525, 397–408 (1991).

Chance, B.

Châtelain, A.

G. Wagnières, Ph. Monnier, M. Savary, P. Cornaz, A. Châtelain, H. van den Bergh, “Photodynamic therapy of early cancer in the upper aerodigestive tract and bronchi: instrumentation and clinical results,” in Future Directions and Applications in Photodynamic Therapy, C. J. Gomer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.IS06, 249–271 (1990).

Cornaz, P.

G. Wagnières, Ph. Monnier, M. Savary, P. Cornaz, A. Châtelain, H. van den Bergh, “Photodynamic therapy of early cancer in the upper aerodigestive tract and bronchi: instrumentation and clinical results,” in Future Directions and Applications in Photodynamic Therapy, C. J. Gomer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.IS06, 249–271 (1990).

de Mul, F. F. M.

R. Graaff, J. G. Aarnoudse, F. F. M. de Mul, H. W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–252 (1993).
[CrossRef]

R. Graaf, J. G. Aarnoudse, F. F. M. de Mul, H. W. Jentink, “Light propagation parameters for anisotropically scattering media based on a rigorous solution of the transport equation,” Appl. Opt. 28, 2273–2279 (1989).
[CrossRef]

Egan, W. G.

W. G. Egan, T. W. Hilgeman, Optical Properties of Inhomo-geneous Materials (Academic, New York, 1979), Chap. 2, p. 21.

Ell, C.

W. Beyer, R. Baumgartner, C. Ell, A. Heinze, D. Jocham, R. Sroka, H. Stepp, E. Unsöld, “Uniform light distribution in hollow organs by means of backscattering layers,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1201, 298–303 (1990).

Farrel, T. J.

T. J. Farrel, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

Farrell, T. J.

T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurement,” Phys. Med. Biol. 37, 2281–2286 (1992).
[CrossRef] [PubMed]

Ference, R. J.

Ferwerda, H. A.

Flock, S. T.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Graaf, R.

Graaff, R.

R. Graaff, J. G. Aarnoudse, F. F. M. de Mul, H. W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–252 (1993).
[CrossRef]

Greenstein, J. L.

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Groenhuis, R. A. J.

Hayata, Y.

Y. Hayata, C. Konaka, “Photodynamic therapy of neoplastic disease,” in Photodynamic Therapy of Neoplastic Disease, D. Kessel, ed. (CRC Press, Boca Raton, Fla., 1990), Vol. 1, pp. 43–64.

Heinze, A.

W. Beyer, R. Baumgartner, C. Ell, A. Heinze, D. Jocham, R. Sroka, H. Stepp, E. Unsöld, “Uniform light distribution in hollow organs by means of backscattering layers,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1201, 298–303 (1990).

Henyey, L. G.

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Hilgeman, T. W.

W. G. Egan, T. W. Hilgeman, Optical Properties of Inhomo-geneous Materials (Academic, New York, 1979), Chap. 2, p. 21.

Ishimaru, A.

L. Reynolds, C. Johnson, A. Ishimaru, “Diffuse reflectance from a finite blood medium: application to the modeling of fiber optic catheters,” Appl. Opt. 15, 2059–2067 (1976).
[CrossRef] [PubMed]

A. Ishimaru, “Diffusion approximation,” in Wave Propagation and Scattering in Random Media, Vol. 1 (Academic, New York, 1978), Chap. 9, pp. 175–186.

Jacques, S. L.

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[CrossRef] [PubMed]

A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” in Laser–Tissue Interaction IV, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1882, 86–101 (1993).

Jansen, H.

W. M. Star, H. P. A. Marijnissen, H. Jansen, M. Keijzer, M. J. C. van Gemert, “Light dosimetry for photodynamic therapy by whole bladder wall irradiation,” Photochem. Photobiol. 46, 619–624 (1987).
[CrossRef] [PubMed]

Jentink, H. W.

R. Graaff, J. G. Aarnoudse, F. F. M. de Mul, H. W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–252 (1993).
[CrossRef]

R. Graaf, J. G. Aarnoudse, F. F. M. de Mul, H. W. Jentink, “Light propagation parameters for anisotropically scattering media based on a rigorous solution of the transport equation,” Appl. Opt. 28, 2273–2279 (1989).
[CrossRef]

Jocham, D.

W. Beyer, R. Baumgartner, C. Ell, A. Heinze, D. Jocham, R. Sroka, H. Stepp, E. Unsöld, “Uniform light distribution in hollow organs by means of backscattering layers,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1201, 298–303 (1990).

Johnson, C.

Keijzer, M.

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[CrossRef] [PubMed]

W. M. Star, H. P. A. Marijnissen, H. Jansen, M. Keijzer, M. J. C. van Gemert, “Light dosimetry for photodynamic therapy by whole bladder wall irradiation,” Photochem. Photobiol. 46, 619–624 (1987).
[CrossRef] [PubMed]

Konaka, C.

Y. Hayata, C. Konaka, “Photodynamic therapy of neoplastic disease,” in Photodynamic Therapy of Neoplastic Disease, D. Kessel, ed. (CRC Press, Boca Raton, Fla., 1990), Vol. 1, pp. 43–64.

Lakowicz, J. R.

Langerholc, J.

Lenz, P.

P. Lenz, “Light distributor for endoscopic photochemo-therapy,” in Future Trends in Biomedical Applications of Lasers, L. O. Svaasand, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1525, 192–195 (1991).

Marijnissen, H. P. A.

W. M. Star, H. P. A. Marijnissen, H. Jansen, M. Keijzer, M. J. C. van Gemert, “Light dosimetry for photodynamic therapy by whole bladder wall irradiation,” Photochem. Photobiol. 46, 619–624 (1987).
[CrossRef] [PubMed]

Mizeret, J.

R. Bays, G. Wagnières, D. Robert, J. Mizeret, D. Braichotte, J.-F. Savary, Ph. Monnier, H. van den Bergh, “Clinical measurements of tissue optical properties in the esophagus and the oral cavity,” in Fifth International Photodynamic Association Biennial Meeting, D. A. Cortese, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2371, 388–395 (1994).

Monnier, P.

R. Bays, G. Wagnières, D. Robert, J.-F. Savary, P. Monnier, H. van den Bergh, “Light dosimetry for photodynamic therapy in the esophagus,” submitted to Lasers Surg. Med.
[PubMed]

R. Bays, G. Wagnières, D. Braichotte, H. van den Bergh, P. Monnier, J.-F. Savary, “Tissue optics and dosimetry for photodynamic cancer therapy in the esophagus,” in Photodynamic Therapy of Cancer, G. Jori, J. Moan, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2078, 13–26 (1993).

Monnier, Ph.

R. Bays, Ph. Monnier, G. Wagnières, D. Braichotte, H. van den Bergh, C. W. Burckhardt, “Clinical optical dose measurement for PDT: invasive and non-invasive techniques,” in Future Trends in Biomedical Applications of Lasers, L. O. Svaasand, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1525, 397–408 (1991).

R. Bays, G. Wagnières, D. Robert, J. Mizeret, D. Braichotte, J.-F. Savary, Ph. Monnier, H. van den Bergh, “Clinical measurements of tissue optical properties in the esophagus and the oral cavity,” in Fifth International Photodynamic Association Biennial Meeting, D. A. Cortese, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2371, 388–395 (1994).

G. Wagnières, Ph. Monnier, M. Savary, P. Cornaz, A. Châtelain, H. van den Bergh, “Photodynamic therapy of early cancer in the upper aerodigestive tract and bronchi: instrumentation and clinical results,” in Future Directions and Applications in Photodynamic Therapy, C. J. Gomer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.IS06, 249–271 (1990).

Moulton, J. D.

Oraevsky, A. A.

A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” in Laser–Tissue Interaction IV, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1882, 86–101 (1993).

Patterson, M. S.

T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurement,” Phys. Med. Biol. 37, 2281–2286 (1992).
[CrossRef] [PubMed]

T. J. Farrel, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
[CrossRef] [PubMed]

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986).
[CrossRef] [PubMed]

M. S. Patterson, E. Schwartz, B. C. Wilson, “Quantitative reflectance spectrophotometry for the non-invasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1065, 115–122 (1989).

B. C. Wilson, M. S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in tissue in vivo,” in Future Directions and Applications in Photodynamic Therapy, C. J. Gomer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.IS06, 219–231 (1990).

Prahl, S. A.

S. A. Prahl, I. A. Vitkin, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
[CrossRef] [PubMed]

C. Wai-Fung, S. A. Prahl, A. J. Welch, “Review of optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

G. Yoon, S. A. Prahl, A. J. Welch, “Accuracies of the diffusion approximation and its similarity relations for laser irradiated biological media,” Appl. Opt. 28, 2250–2255 (1989).
[CrossRef] [PubMed]

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[CrossRef] [PubMed]

Preuss, L. E.

Reynolds, L.

Robert, D.

R. Bays, G. Wagnières, D. Robert, J.-F. Savary, P. Monnier, H. van den Bergh, “Light dosimetry for photodynamic therapy in the esophagus,” submitted to Lasers Surg. Med.
[PubMed]

R. Bays, G. Wagnières, D. Robert, J. Mizeret, D. Braichotte, J.-F. Savary, Ph. Monnier, H. van den Bergh, “Clinical measurements of tissue optical properties in the esophagus and the oral cavity,” in Fifth International Photodynamic Association Biennial Meeting, D. A. Cortese, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2371, 388–395 (1994).

Savary, J.-F.

R. Bays, G. Wagnières, D. Robert, J. Mizeret, D. Braichotte, J.-F. Savary, Ph. Monnier, H. van den Bergh, “Clinical measurements of tissue optical properties in the esophagus and the oral cavity,” in Fifth International Photodynamic Association Biennial Meeting, D. A. Cortese, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2371, 388–395 (1994).

R. Bays, G. Wagnières, D. Robert, J.-F. Savary, P. Monnier, H. van den Bergh, “Light dosimetry for photodynamic therapy in the esophagus,” submitted to Lasers Surg. Med.
[PubMed]

R. Bays, G. Wagnières, D. Braichotte, H. van den Bergh, P. Monnier, J.-F. Savary, “Tissue optics and dosimetry for photodynamic cancer therapy in the esophagus,” in Photodynamic Therapy of Cancer, G. Jori, J. Moan, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2078, 13–26 (1993).

Savary, M.

G. Wagnières, Ph. Monnier, M. Savary, P. Cornaz, A. Châtelain, H. van den Bergh, “Photodynamic therapy of early cancer in the upper aerodigestive tract and bronchi: instrumentation and clinical results,” in Future Directions and Applications in Photodynamic Therapy, C. J. Gomer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.IS06, 249–271 (1990).

Schwartz, E.

M. S. Patterson, E. Schwartz, B. C. Wilson, “Quantitative reflectance spectrophotometry for the non-invasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1065, 115–122 (1989).

Sroka, R.

W. Beyer, R. Baumgartner, C. Ell, A. Heinze, D. Jocham, R. Sroka, H. Stepp, E. Unsöld, “Uniform light distribution in hollow organs by means of backscattering layers,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1201, 298–303 (1990).

Star, W. M.

W. M. Star, H. P. A. Marijnissen, H. Jansen, M. Keijzer, M. J. C. van Gemert, “Light dosimetry for photodynamic therapy by whole bladder wall irradiation,” Photochem. Photobiol. 46, 619–624 (1987).
[CrossRef] [PubMed]

Stepp, H.

W. Beyer, R. Baumgartner, C. Ell, A. Heinze, D. Jocham, R. Sroka, H. Stepp, E. Unsöld, “Uniform light distribution in hollow organs by means of backscattering layers,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1201, 298–303 (1990).

Taylor, R. C.

Ten Bosch, J. J.

Tittel, F. K.

A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” in Laser–Tissue Interaction IV, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1882, 86–101 (1993).

Unsöld, E.

W. Beyer, R. Baumgartner, C. Ell, A. Heinze, D. Jocham, R. Sroka, H. Stepp, E. Unsöld, “Uniform light distribution in hollow organs by means of backscattering layers,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1201, 298–303 (1990).

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles, (Dover, New York, 1981), Chap. 7, pp. 85–102.

van den Bergh, H.

H. van den Bergh, “Photodynamic therapy and photodetection of early cancer in the upper aerodigestive tract, the tracheobronchial tree, the oesophagus and the urinary bladder,” in Proceedings of the First International Symposium on Hadrontherapy, U. Amaldi, B. Larsson, eds. (Elsevier Science, New York, 1994), pp. 577–621.

R. Bays, G. Wagnières, D. Braichotte, H. van den Bergh, P. Monnier, J.-F. Savary, “Tissue optics and dosimetry for photodynamic cancer therapy in the esophagus,” in Photodynamic Therapy of Cancer, G. Jori, J. Moan, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2078, 13–26 (1993).

R. Bays, Ph. Monnier, G. Wagnières, D. Braichotte, H. van den Bergh, C. W. Burckhardt, “Clinical optical dose measurement for PDT: invasive and non-invasive techniques,” in Future Trends in Biomedical Applications of Lasers, L. O. Svaasand, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1525, 397–408 (1991).

R. Bays, G. Wagnières, D. Robert, J.-F. Savary, P. Monnier, H. van den Bergh, “Light dosimetry for photodynamic therapy in the esophagus,” submitted to Lasers Surg. Med.
[PubMed]

G. Wagnières, Ph. Monnier, M. Savary, P. Cornaz, A. Châtelain, H. van den Bergh, “Photodynamic therapy of early cancer in the upper aerodigestive tract and bronchi: instrumentation and clinical results,” in Future Directions and Applications in Photodynamic Therapy, C. J. Gomer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.IS06, 249–271 (1990).

R. Bays, G. Wagnières, D. Robert, J. Mizeret, D. Braichotte, J.-F. Savary, Ph. Monnier, H. van den Bergh, “Clinical measurements of tissue optical properties in the esophagus and the oral cavity,” in Fifth International Photodynamic Association Biennial Meeting, D. A. Cortese, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2371, 388–395 (1994).

van Gemert, M. J. C.

W. M. Star, H. P. A. Marijnissen, H. Jansen, M. Keijzer, M. J. C. van Gemert, “Light dosimetry for photodynamic therapy by whole bladder wall irradiation,” Photochem. Photobiol. 46, 619–624 (1987).
[CrossRef] [PubMed]

Vitkin, I. A.

S. A. Prahl, I. A. Vitkin, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
[CrossRef] [PubMed]

Wagnières, G.

R. Bays, G. Wagnières, D. Robert, J. Mizeret, D. Braichotte, J.-F. Savary, Ph. Monnier, H. van den Bergh, “Clinical measurements of tissue optical properties in the esophagus and the oral cavity,” in Fifth International Photodynamic Association Biennial Meeting, D. A. Cortese, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2371, 388–395 (1994).

G. Wagnières, Ph. Monnier, M. Savary, P. Cornaz, A. Châtelain, H. van den Bergh, “Photodynamic therapy of early cancer in the upper aerodigestive tract and bronchi: instrumentation and clinical results,” in Future Directions and Applications in Photodynamic Therapy, C. J. Gomer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.IS06, 249–271 (1990).

R. Bays, G. Wagnières, D. Robert, J.-F. Savary, P. Monnier, H. van den Bergh, “Light dosimetry for photodynamic therapy in the esophagus,” submitted to Lasers Surg. Med.
[PubMed]

R. Bays, Ph. Monnier, G. Wagnières, D. Braichotte, H. van den Bergh, C. W. Burckhardt, “Clinical optical dose measurement for PDT: invasive and non-invasive techniques,” in Future Trends in Biomedical Applications of Lasers, L. O. Svaasand, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1525, 397–408 (1991).

R. Bays, G. Wagnières, D. Braichotte, H. van den Bergh, P. Monnier, J.-F. Savary, “Tissue optics and dosimetry for photodynamic cancer therapy in the esophagus,” in Photodynamic Therapy of Cancer, G. Jori, J. Moan, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2078, 13–26 (1993).

Wai-Fung, C.

C. Wai-Fung, S. A. Prahl, A. J. Welch, “Review of optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Welch, A. J.

C. Wai-Fung, S. A. Prahl, A. J. Welch, “Review of optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[CrossRef] [PubMed]

G. Yoon, S. A. Prahl, A. J. Welch, “Accuracies of the diffusion approximation and its similarity relations for laser irradiated biological media,” Appl. Opt. 28, 2250–2255 (1989).
[CrossRef] [PubMed]

Wilson, B. C.

T. J. Farrel, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurement,” Phys. Med. Biol. 37, 2281–2286 (1992).
[CrossRef] [PubMed]

M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
[CrossRef] [PubMed]

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986).
[CrossRef] [PubMed]

B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

B. C. Wilson, M. S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in tissue in vivo,” in Future Directions and Applications in Photodynamic Therapy, C. J. Gomer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.IS06, 219–231 (1990).

M. S. Patterson, E. Schwartz, B. C. Wilson, “Quantitative reflectance spectrophotometry for the non-invasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1065, 115–122 (1989).

Wyman, D. R.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Yoon, G.

Appl. Opt. (9)

L. Reynolds, C. Johnson, A. Ishimaru, “Diffuse reflectance from a finite blood medium: application to the modeling of fiber optic catheters,” Appl. Opt. 15, 2059–2067 (1976).
[CrossRef] [PubMed]

J. Langerholc, “Beam broadening in dense scattering media,” Appl. Opt. 21, 1593–1598 (1982).
[CrossRef] [PubMed]

R. A. J. Groenhuis, H. A. Ferwerda, J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory,” Appl. Opt. 22, 2456–2462 (1983).
[CrossRef] [PubMed]

R. A. J. Groenhuis, J. J. Ten Bosch, H. A. Ferwerda, “Scattering and absorption of turbid materials determined from reflection measurements. 2: Measuring method and calibration,” Appl. Opt. 22, 2463–2467 (1983).
[CrossRef] [PubMed]

G. Yoon, S. A. Prahl, A. J. Welch, “Accuracies of the diffusion approximation and its similarity relations for laser irradiated biological media,” Appl. Opt. 28, 2250–2255 (1989).
[CrossRef] [PubMed]

R. Graaf, J. G. Aarnoudse, F. F. M. de Mul, H. W. Jentink, “Light propagation parameters for anisotropically scattering media based on a rigorous solution of the transport equation,” Appl. Opt. 28, 2273–2279 (1989).
[CrossRef]

F. P. Bolin, L. E. Preuss, R. C. Taylor, R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
[CrossRef] [PubMed]

Astrophys. J. (1)

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Wai-Fung, S. A. Prahl, A. J. Welch, “Review of optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[CrossRef] [PubMed]

Med. Phys. (2)

B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

T. J. Farrel, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

Opt. Eng. (1)

R. Graaff, J. G. Aarnoudse, F. F. M. de Mul, H. W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–252 (1993).
[CrossRef]

Photochem. Photobiol. (1)

W. M. Star, H. P. A. Marijnissen, H. Jansen, M. Keijzer, M. J. C. van Gemert, “Light dosimetry for photodynamic therapy by whole bladder wall irradiation,” Photochem. Photobiol. 46, 619–624 (1987).
[CrossRef] [PubMed]

Phys. Med. Biol. (3)

B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986).
[CrossRef] [PubMed]

S. A. Prahl, I. A. Vitkin, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
[CrossRef] [PubMed]

T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurement,” Phys. Med. Biol. 37, 2281–2286 (1992).
[CrossRef] [PubMed]

Other (16)

W. G. Egan, T. W. Hilgeman, Optical Properties of Inhomo-geneous Materials (Academic, New York, 1979), Chap. 2, p. 21.

R. Bays, G. Wagnières, D. Robert, J. Mizeret, D. Braichotte, J.-F. Savary, Ph. Monnier, H. van den Bergh, “Clinical measurements of tissue optical properties in the esophagus and the oral cavity,” in Fifth International Photodynamic Association Biennial Meeting, D. A. Cortese, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2371, 388–395 (1994).

A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” in Laser–Tissue Interaction IV, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1882, 86–101 (1993).

B. C. Wilson, M. S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in tissue in vivo,” in Future Directions and Applications in Photodynamic Therapy, C. J. Gomer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.IS06, 219–231 (1990).

R. Bays, Ph. Monnier, G. Wagnières, D. Braichotte, H. van den Bergh, C. W. Burckhardt, “Clinical optical dose measurement for PDT: invasive and non-invasive techniques,” in Future Trends in Biomedical Applications of Lasers, L. O. Svaasand, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1525, 397–408 (1991).

M. S. Patterson, E. Schwartz, B. C. Wilson, “Quantitative reflectance spectrophotometry for the non-invasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1065, 115–122 (1989).

H. C. van de Hulst, Light Scattering by Small Particles, (Dover, New York, 1981), Chap. 7, pp. 85–102.

R. Bays, G. Wagnières, D. Braichotte, H. van den Bergh, P. Monnier, J.-F. Savary, “Tissue optics and dosimetry for photodynamic cancer therapy in the esophagus,” in Photodynamic Therapy of Cancer, G. Jori, J. Moan, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2078, 13–26 (1993).

R. Bays, G. Wagnières, D. Robert, J.-F. Savary, P. Monnier, H. van den Bergh, “Light dosimetry for photodynamic therapy in the esophagus,” submitted to Lasers Surg. Med.
[PubMed]

G. Wagnières, Ph. Monnier, M. Savary, P. Cornaz, A. Châtelain, H. van den Bergh, “Photodynamic therapy of early cancer in the upper aerodigestive tract and bronchi: instrumentation and clinical results,” in Future Directions and Applications in Photodynamic Therapy, C. J. Gomer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.IS06, 249–271 (1990).

P. Lenz, “Light distributor for endoscopic photochemo-therapy,” in Future Trends in Biomedical Applications of Lasers, L. O. Svaasand, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1525, 192–195 (1991).

W. Beyer, R. Baumgartner, C. Ell, A. Heinze, D. Jocham, R. Sroka, H. Stepp, E. Unsöld, “Uniform light distribution in hollow organs by means of backscattering layers,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1201, 298–303 (1990).

A. Ishimaru, “Diffusion approximation,” in Wave Propagation and Scattering in Random Media, Vol. 1 (Academic, New York, 1978), Chap. 9, pp. 175–186.

H. van den Bergh, “Photodynamic therapy and photodetection of early cancer in the upper aerodigestive tract, the tracheobronchial tree, the oesophagus and the urinary bladder,” in Proceedings of the First International Symposium on Hadrontherapy, U. Amaldi, B. Larsson, eds. (Elsevier Science, New York, 1994), pp. 577–621.

Y. Hayata, C. Konaka, “Photodynamic therapy of neoplastic disease,” in Photodynamic Therapy of Neoplastic Disease, D. Kessel, ed. (CRC Press, Boca Raton, Fla., 1990), Vol. 1, pp. 43–64.

W. B. Henderson, T. J. Dougherty, eds., Photodynamic Therapy: Basic Principles and Applications (Dekker, New York, 1992), Sec. III, pp. 219–331.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Principle of the tissue optical property measurement based on the observation of diffuse reflectance at different distances from the light source.

Fig. 2.
Fig. 2.

Determination of optical parameters based on spatial variation of the slope of ln[R(r)].

Fig. 3.
Fig. 3.

Slopes of ln[R(r)] at two distances from the light source as a function of optical properties. The slopes were calculated using the Groenhuis et al. diffusion model. In this example, the sample thickness is 15 mm and the relative refractive index is 1.35, indicating an internal specular reflectance r d of 49% for an isotropic radiance distribution and a smooth surface.

Fig. 4.
Fig. 4.

Slopes of ln[R(r)] at two distances from the light source, calculated for two different sample thicknesses, namely, 5 (○) and 15 mm (●). The relative refractive index is 1.35 (r d = 49%). This figure shows the influence of the thickness on the measured quantities and on the measurement sensitivity.

Fig. 5.
Fig. 5.

Slopes of ln[R(r)] at two distances from the light source calculated for two relative refractive indices, namely, 1.5 (○) and 1.35 (●), i.e., with, respectively, 60% and 49% of internal specular reflectance. The sample thickness is 15 mm. These relative refractive indices can be considered as the utmost values observed at the tissue–air boundary for soft living tissues.21 In the case of optically thick samples, it appears that boundary conditions do not affect the determination of effective attenuation coefficient μeff.

Fig. 6.
Fig. 6.

Sensitivities of the determination of μ s and μeff as a function of the distance between the light beam and the position of the measurement. Sensitivity S μ eff has been calculated with several effective attenuation coefficients μeff typically observed in soft living tissues at wavelengths of interest in PDT.34 The S μ eff plot is shaded between the upper limit given by μ s = 0.5 mm−1 and the lower limit given by μ s = 4 mm−1. Sensitivity S μ s has been estimated for different values of μ s . The S μ s plot is shaded between the upper limit given by μeff = 0.1 mm−1 and the lower limit given by μeff = 2 mm−1.

Fig. 7.
Fig. 7.

Minimal sample thickness in order to obtain a maximal sensitivity for μeff of 0.5.

Fig. 8.
Fig. 8.

Schematic view of the noninvasive probe for measuring tissue optical parameters.

Fig. 9.
Fig. 9.

Schematic diagram of the experimental setup for the noninvasive optical probe.

Fig. 10.
Fig. 10.

Schematic view of the second noninvasive prototype probe, which was developed for in vivo measurement in the esophagus in the red (630 nm) and in the green (514 nm). The dilator facilitates the insertion of the probe into the esophagus.

Fig. 11.
Fig. 11.

Measurement positions in the second probe.

Fig. 12.
Fig. 12.

Radial distribution of diffusely reflected light at 633 nm measured at the surface of white POM samples of different thicknesses. These measurements were performed with the first probe.

Fig. 13.
Fig. 13.

Diagram that was used to determine optical parameters of white POM samples of different thicknesses. The model data were obtained from the Groenhuis et al. diffusion model. Measurements were determined from the radial distribution of diffusely reflected light at 633 nm measured with the first probe.

Fig. 14.
Fig. 14.

In vivo measurement performed at 630 nm in a human esophagus; 51 measurements were done on 11 patients with the second probe.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

μ eff = [ 3 μ a ( μ a + μ s ) ] 1 / 2 .
R ( r ) = i = 1 C i λ i K 0 ( λ i r ) .
R ( r ) D 1 r 1 / 2 exp ( D 2 r ) .
S μ eff = Δ m m Δ μ eff μ eff μ s = const μ eff m m μ eff μ s = const , S μ s = Δ m m Δ μ s μ s μ eff = const μ s m m μ s μ eff = const .
E m ( r 1 ) S μ s ( r 1 ) E μ s + S μ eff ( r 1 ) E μ eff ,
E m ( r 2 ) S μ s ( r 2 ) E μ s + S μ eff ( r 2 ) E μ eff ,
E m ( r i ) = Δ m ( r i ) m ( r i ) ,    E μ i = Δ μ i μ i .
E μ s 1 S μ s ( r 1 ) S μ eff ( r 2 ) S μ eff ( r 1 ) S μ s ( r 2 )      × [ S μ eff ( r 2 ) E m ( r 1 ) S μ eff ( r 1 ) E m ( r 2 ) ] ,
E μ eff 1 S μ s ( r 1 ) S μ eff ( r 2 ) S μ eff ( r 1 ) S μ s ( r 2 )       × [ S μ s ( r 2 ) E m ( r 1 ) + S μ s ( r 1 ) E m ( r 2 ) ] .
E μ s 1 S μ s ( r 1 ) E m ( r 1 ) S μ eff ( r 1 ) S μ s ( r 1 ) S μ eff ( r 2 ) E m ( r 2 ) ,
E μ eff S μ s ( r 2 ) S μ s ( r 1 ) S μ eff ( r 2 ) E m ( r 1 ) + 1 S μ eff ( r 2 ) E m ( r 2 ) .
E μ a 1 2 μ a μ s + 1 E μ s + 2 ( μ a μ s + 1 ) 2 μ a μ s + 1 E μ eff .
E μ a E μ s + 2 E μ eff .
E μ a 1 / 3 E μ s + 4 / 3 E μ eff .
R ( r ) z 0 2 π exp [ μ eff z 0 2 + r 2 ] z 0 2 + r 2 ( μ eff + 1 z 0 2 + r 2 ) ,
z 0 = 1 / μ s .
m ( r ) = d d r ln [ R ( r ) ] = μ eff r z 0 2 + r 2     2 r z 0 2 + r 2 r ( z 0 2 + r 2 ) 3 / 2 μ eff + 1 z 0 2 + r 2 .
m = λ 1 = k 1 2 + μ eff 2 ,
tan ( k 1 d ) = 2 h k 1 h 2 k 1 2 1 ,
h = 2 3 ( μ a + μ s ) ( 1 + r d ) ( 1 r d ) ,
S μ eff max μ eff m m μ eff μ s = const μ eff 2 k 1 2 + μ eff 2             ( if  μ s μ a ) .
k 1 * = μ eff 1 S μ eff max * S μ eff max * ,
d min = 1 k 1 * [ arctan ( 2 h k 1 * h 2 k 1 * 2 1 ) + π a ]       with [ a = 1 if ( h 2 k 1 * 2 1 ) < 0 a = 0 elsewhere ] .

Metrics