Abstract

The dimensional stabilities of five commercially available low-expansion glass ceramics have been measured between −40 °C and +90 °C. Materials tested include Zerodur, Zerodur M, Astrositall, Clearceram 55, and Clearceram 63. With the use of a standardized thermal testing procedure, the thermal expansion, isothermal shrinkage, and hysteresis behavior of the various materials are compared with one another. A detailed comparison of three separate melts of Astrositall, two separate melts of Zerodur, and one melt of Zerodur M indicates that between −40 °C and +90 °C the dimensional stability and uniformity characteristics of two of the melts of Astrositall are somewhat better than those of the other two materials. To my knowledge, this is the first published comparison of data from these glass ceramics taken with identical test procedures.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. White, “Use of Cer-vit material in low expansion reference optical cavities,” Appl. Opt. 6, 1138–1139 (1967).
    [Crossref] [PubMed]
  2. S. F. Jacobs, D. Shough, “Thermal expansion uniformity of Haraeus-Amersil TO8E fused silica,” Appl. Opt. 20, 3461–3463 (1981).
    [Crossref] [PubMed]
  3. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).
  4. S. F. Jacobs, “Dimensional stability of materials useful in optical engineering,” Opt. Acta 33, 1377–1388 (1986).
    [Crossref]
  5. O. Lindig, W. Pannhorst, “Thermal expansion and length stability of Zerodur in dependence on temperature and times,” Appl. Opt. 24, 3330–3334 (1985).
    [Crossref] [PubMed]
  6. R. Haug, A. Klaas, W. Pannhorst, E. Rodek, “Length variation in Zerodur M in the temperature range from -60 °C to +100 °C,” Appl. Opt. 28, 4052–4054 (1989).
    [Crossref] [PubMed]

1989 (1)

1986 (1)

S. F. Jacobs, “Dimensional stability of materials useful in optical engineering,” Opt. Acta 33, 1377–1388 (1986).
[Crossref]

1985 (1)

1981 (1)

1967 (1)

Haug, R.

Jacobs, S. F.

S. F. Jacobs, “Dimensional stability of materials useful in optical engineering,” Opt. Acta 33, 1377–1388 (1986).
[Crossref]

S. F. Jacobs, D. Shough, “Thermal expansion uniformity of Haraeus-Amersil TO8E fused silica,” Appl. Opt. 20, 3461–3463 (1981).
[Crossref] [PubMed]

Klaas, A.

Lindig, O.

Pannhorst, W.

Rodek, E.

Shough, D.

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).

White, A. D.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Resonant cavity measurement station.

Fig. 2.
Fig. 2.

Two resonator blocks: half-confocal, left; twin confocal, right.

Fig. 3.
Fig. 3.

Cavity variation versus temperature: Astrositall, melt 1, −40 °C to +25 °C.

Fig. 4.
Fig. 4.

Cavity variation versus temperature: Astrositall, melt 1, +25 °C to +90 °C.

Fig. 5.
Fig. 5.

Cavity variation versus temperature: Astrositall, melt 2, −40 °C to +25 °C.

Fig. 6.
Fig. 6.

Cavity variation versus temperature: Astrositall, melt 2, +25 °C to +90 °C.

Fig. 7.
Fig. 7.

Cavity variation versus temperature: Astrositall, melt 3, −40 °C to +25 °C.

Fig. 8.
Fig. 8.

Cavity variation versus temperature: Astrositall, melt 3, +25 °C, to +90 °C.

Fig. 9.
Fig. 9.

Cavity variation versus temperature: Zerodur, melt 1, −40 °C to +25 °C.

Fig. 10.
Fig. 10.

Cavity variation versus temperature: Zerodur, melt 1, +25 °C to +90 °C.

Fig. 11.
Fig. 11.

Cavity variation versus temperature: Zerodur, melt 2, −40 °C to +25 °C.

Fig. 12.
Fig. 12.

Cavity variation versus temperature: Zerodur, melt 2, +25 °C to +90 °C.

Fig. 13.
Fig. 13.

Cavity variation versus temperature: Zerodur M, melt 1, −40 °C to +25 °C.

Fig. 14.
Fig. 14.

Cavity variation versus temperature: Zerodur M, melt 1, +25 °C to +90 °C.

Tables (1)

Tables Icon

Table 1. Dimensional Changes Over Time and Temperature

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ L L = Δυ υ .
υ q , n , m = c 2 L [ q + n + m + 1 π cos 1 ( 1 L R ) ] .
Δυ = c 2 π L cos 1 ( 1 L R ) .

Metrics