Abstract

A solid-block stationary Fourier-transform spectrometer (SBSFTS) is described that is applicable to a wide range of portable, moderate-resolution instrumentation needs that include the detection of temporally variant signatures. The SBSFTS is a low-cost, extremely rugged stationary Fourier-transform spectrometer based on the combination of three standard prism types. The SBSFTS uses a source-doubling, square-and-triangle common-path topology that is mechanically rugged, simple to align, and virtually immune to alignment perturbation. Its alignment stability makes it suitable for use in a variety of hostile operating environments. When coupled to a fiber-optic input, the spectrometer can be constructed in an extremely compact form. Experimental results have demonstrated the design and the performance of the spectrometer.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), pp. 2–26.
  2. T. Okamoto, S. Kawata, S. Minami, “Fourier transform spectrometer with a self-scanning photodiode array,” Appl. Opt. 23, 269–273 (1984).
    [CrossRef] [PubMed]
  3. T. H. Barnes, “Photodiode array Fourier transform spectrometer with improved dynamic range,” Appl. Opt. 24, 3702–3706 (1985).
    [CrossRef] [PubMed]
  4. T. Okamoto, S. Kawata, S. Minami, “Optical method for resolution enhancement in photodiode array Fourier transform spectroscopy,” Appl. Opt. 24, 4221–4225 (1985).
    [CrossRef] [PubMed]
  5. M.-L. Junttila, “Stationary Fourier-transform spectrometer,” Appl. Opt. 31, 4106–4112 (1992).
    [CrossRef] [PubMed]
  6. H. J. Caulfield, “Spectroscopy,” in Handbook of Optical Holography, H. J. Caulfield, ed. (Academic, New York, 1979).
  7. M.-L. Junttila, J. Kauppinen, E. Ikonen, “Performance limits of stationary Fourier spectrometers,” J. Opt. Soc. Am. A 8, 1457–1462 (1991).
    [CrossRef]
  8. W. H. Smith, W. U. Schempp, “Digital array scanned interferometers for astronomy,” Exp. Astron. 1, 389 (1991).
    [CrossRef]
  9. E. A. Wachter, J. W. Haas, D. R. James, R. B. Gammage, T. L. Ferrell, T. Vo-Dinh, “Advances in surface-enhanced Raman spectroscopy for hazardous waste monitoring,” in Raman and Luminescence Spectroscopies in Technology II, F. Adar, J. E. Griffiths, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1336, 256–262 (1990).
  10. J. Koley, R. L. Stanton, “Electro-optical detection analysis for the F-15 Eagle,” Wright Laboratory WL-TR-92-1083 (Wright-Patterson Air Force Base, Ohio, 1992).
  11. J. B. Rafert, P. G. Lucey, H. Newby, “spatially modulated imaging Fourier transform spectrometer for astronomical and booster plume observations,” presented at the ESO Conference on Progress in Telescope and Instrumentation Technologies, Garching, Germany, 1992.
  12. J. B. Rafert, E. Holbert, E. Rusk, H. Newby, S. Durham, E. Caudill, D. Keating, “The Malabar, spatially modulated imaging Fourier transform spectrometer (SMIFTS),” in Proceedings of the International Symposium on Spectral Sensing Research (1992), Vol. 1, p. 266.
  13. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), pp. 81–96.
  14. R. G. Sellar, J. B. Rafert, “Effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33, 3087–3092 (1994).
    [CrossRef]

1994 (1)

R. G. Sellar, J. B. Rafert, “Effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33, 3087–3092 (1994).
[CrossRef]

1992 (2)

J. B. Rafert, E. Holbert, E. Rusk, H. Newby, S. Durham, E. Caudill, D. Keating, “The Malabar, spatially modulated imaging Fourier transform spectrometer (SMIFTS),” in Proceedings of the International Symposium on Spectral Sensing Research (1992), Vol. 1, p. 266.

M.-L. Junttila, “Stationary Fourier-transform spectrometer,” Appl. Opt. 31, 4106–4112 (1992).
[CrossRef] [PubMed]

1991 (2)

M.-L. Junttila, J. Kauppinen, E. Ikonen, “Performance limits of stationary Fourier spectrometers,” J. Opt. Soc. Am. A 8, 1457–1462 (1991).
[CrossRef]

W. H. Smith, W. U. Schempp, “Digital array scanned interferometers for astronomy,” Exp. Astron. 1, 389 (1991).
[CrossRef]

1985 (2)

1984 (1)

Barnes, T. H.

Bell, R. J.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), pp. 81–96.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), pp. 2–26.

Caudill, E.

J. B. Rafert, E. Holbert, E. Rusk, H. Newby, S. Durham, E. Caudill, D. Keating, “The Malabar, spatially modulated imaging Fourier transform spectrometer (SMIFTS),” in Proceedings of the International Symposium on Spectral Sensing Research (1992), Vol. 1, p. 266.

Caulfield, H. J.

H. J. Caulfield, “Spectroscopy,” in Handbook of Optical Holography, H. J. Caulfield, ed. (Academic, New York, 1979).

Durham, S.

J. B. Rafert, E. Holbert, E. Rusk, H. Newby, S. Durham, E. Caudill, D. Keating, “The Malabar, spatially modulated imaging Fourier transform spectrometer (SMIFTS),” in Proceedings of the International Symposium on Spectral Sensing Research (1992), Vol. 1, p. 266.

Ferrell, T. L.

E. A. Wachter, J. W. Haas, D. R. James, R. B. Gammage, T. L. Ferrell, T. Vo-Dinh, “Advances in surface-enhanced Raman spectroscopy for hazardous waste monitoring,” in Raman and Luminescence Spectroscopies in Technology II, F. Adar, J. E. Griffiths, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1336, 256–262 (1990).

Gammage, R. B.

E. A. Wachter, J. W. Haas, D. R. James, R. B. Gammage, T. L. Ferrell, T. Vo-Dinh, “Advances in surface-enhanced Raman spectroscopy for hazardous waste monitoring,” in Raman and Luminescence Spectroscopies in Technology II, F. Adar, J. E. Griffiths, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1336, 256–262 (1990).

Haas, J. W.

E. A. Wachter, J. W. Haas, D. R. James, R. B. Gammage, T. L. Ferrell, T. Vo-Dinh, “Advances in surface-enhanced Raman spectroscopy for hazardous waste monitoring,” in Raman and Luminescence Spectroscopies in Technology II, F. Adar, J. E. Griffiths, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1336, 256–262 (1990).

Holbert, E.

J. B. Rafert, E. Holbert, E. Rusk, H. Newby, S. Durham, E. Caudill, D. Keating, “The Malabar, spatially modulated imaging Fourier transform spectrometer (SMIFTS),” in Proceedings of the International Symposium on Spectral Sensing Research (1992), Vol. 1, p. 266.

Ikonen, E.

James, D. R.

E. A. Wachter, J. W. Haas, D. R. James, R. B. Gammage, T. L. Ferrell, T. Vo-Dinh, “Advances in surface-enhanced Raman spectroscopy for hazardous waste monitoring,” in Raman and Luminescence Spectroscopies in Technology II, F. Adar, J. E. Griffiths, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1336, 256–262 (1990).

Junttila, M.-L.

Kauppinen, J.

Kawata, S.

Keating, D.

J. B. Rafert, E. Holbert, E. Rusk, H. Newby, S. Durham, E. Caudill, D. Keating, “The Malabar, spatially modulated imaging Fourier transform spectrometer (SMIFTS),” in Proceedings of the International Symposium on Spectral Sensing Research (1992), Vol. 1, p. 266.

Koley, J.

J. Koley, R. L. Stanton, “Electro-optical detection analysis for the F-15 Eagle,” Wright Laboratory WL-TR-92-1083 (Wright-Patterson Air Force Base, Ohio, 1992).

Lucey, P. G.

J. B. Rafert, P. G. Lucey, H. Newby, “spatially modulated imaging Fourier transform spectrometer for astronomical and booster plume observations,” presented at the ESO Conference on Progress in Telescope and Instrumentation Technologies, Garching, Germany, 1992.

Minami, S.

Newby, H.

J. B. Rafert, E. Holbert, E. Rusk, H. Newby, S. Durham, E. Caudill, D. Keating, “The Malabar, spatially modulated imaging Fourier transform spectrometer (SMIFTS),” in Proceedings of the International Symposium on Spectral Sensing Research (1992), Vol. 1, p. 266.

J. B. Rafert, P. G. Lucey, H. Newby, “spatially modulated imaging Fourier transform spectrometer for astronomical and booster plume observations,” presented at the ESO Conference on Progress in Telescope and Instrumentation Technologies, Garching, Germany, 1992.

Okamoto, T.

Rafert, J. B.

R. G. Sellar, J. B. Rafert, “Effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33, 3087–3092 (1994).
[CrossRef]

J. B. Rafert, E. Holbert, E. Rusk, H. Newby, S. Durham, E. Caudill, D. Keating, “The Malabar, spatially modulated imaging Fourier transform spectrometer (SMIFTS),” in Proceedings of the International Symposium on Spectral Sensing Research (1992), Vol. 1, p. 266.

J. B. Rafert, P. G. Lucey, H. Newby, “spatially modulated imaging Fourier transform spectrometer for astronomical and booster plume observations,” presented at the ESO Conference on Progress in Telescope and Instrumentation Technologies, Garching, Germany, 1992.

Rusk, E.

J. B. Rafert, E. Holbert, E. Rusk, H. Newby, S. Durham, E. Caudill, D. Keating, “The Malabar, spatially modulated imaging Fourier transform spectrometer (SMIFTS),” in Proceedings of the International Symposium on Spectral Sensing Research (1992), Vol. 1, p. 266.

Schempp, W. U.

W. H. Smith, W. U. Schempp, “Digital array scanned interferometers for astronomy,” Exp. Astron. 1, 389 (1991).
[CrossRef]

Sellar, R. G.

R. G. Sellar, J. B. Rafert, “Effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33, 3087–3092 (1994).
[CrossRef]

Smith, W. H.

W. H. Smith, W. U. Schempp, “Digital array scanned interferometers for astronomy,” Exp. Astron. 1, 389 (1991).
[CrossRef]

Stanton, R. L.

J. Koley, R. L. Stanton, “Electro-optical detection analysis for the F-15 Eagle,” Wright Laboratory WL-TR-92-1083 (Wright-Patterson Air Force Base, Ohio, 1992).

Vo-Dinh, T.

E. A. Wachter, J. W. Haas, D. R. James, R. B. Gammage, T. L. Ferrell, T. Vo-Dinh, “Advances in surface-enhanced Raman spectroscopy for hazardous waste monitoring,” in Raman and Luminescence Spectroscopies in Technology II, F. Adar, J. E. Griffiths, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1336, 256–262 (1990).

Wachter, E. A.

E. A. Wachter, J. W. Haas, D. R. James, R. B. Gammage, T. L. Ferrell, T. Vo-Dinh, “Advances in surface-enhanced Raman spectroscopy for hazardous waste monitoring,” in Raman and Luminescence Spectroscopies in Technology II, F. Adar, J. E. Griffiths, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1336, 256–262 (1990).

Appl. Opt. (4)

Exp. Astron (1)

W. H. Smith, W. U. Schempp, “Digital array scanned interferometers for astronomy,” Exp. Astron. 1, 389 (1991).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

R. G. Sellar, J. B. Rafert, “Effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33, 3087–3092 (1994).
[CrossRef]

Proceedings of the International Symposium on Spectral Sensing Research (1)

J. B. Rafert, E. Holbert, E. Rusk, H. Newby, S. Durham, E. Caudill, D. Keating, “The Malabar, spatially modulated imaging Fourier transform spectrometer (SMIFTS),” in Proceedings of the International Symposium on Spectral Sensing Research (1992), Vol. 1, p. 266.

Other (6)

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), pp. 81–96.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), pp. 2–26.

E. A. Wachter, J. W. Haas, D. R. James, R. B. Gammage, T. L. Ferrell, T. Vo-Dinh, “Advances in surface-enhanced Raman spectroscopy for hazardous waste monitoring,” in Raman and Luminescence Spectroscopies in Technology II, F. Adar, J. E. Griffiths, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1336, 256–262 (1990).

J. Koley, R. L. Stanton, “Electro-optical detection analysis for the F-15 Eagle,” Wright Laboratory WL-TR-92-1083 (Wright-Patterson Air Force Base, Ohio, 1992).

J. B. Rafert, P. G. Lucey, H. Newby, “spatially modulated imaging Fourier transform spectrometer for astronomical and booster plume observations,” presented at the ESO Conference on Progress in Telescope and Instrumentation Technologies, Garching, Germany, 1992.

H. J. Caulfield, “Spectroscopy,” in Handbook of Optical Holography, H. J. Caulfield, ed. (Academic, New York, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

SBSFTS system diagram.

Fig. 2
Fig. 2

SBSFTS interferometer tunnel diagrams: (a) transmitted beam path, (b) reflected beam path.

Fig. 3
Fig. 3

(a) Optical path-length surfaces at the detector plane for the two interfering wave fronts, (b) optical path difference between the two wave fronts.

Fig. 4
Fig. 4

(a) Surfaces showing the fine detail of the aberration-induced path deviation from the ideal surfaces, (b) aberration-induced fringe shift.

Fig. 5
Fig. 5

SBSFTS experimental implementation. SI fiber, step-index fiber.

Fig. 6
Fig. 6

Spectra of a low-pressure mercury calibration lamp (Hg) and an incoherent red diode spectra measured with (a) a Geophysical Sciences, Inc., spectroradiometer (dotted curves); (b) the SBSFTS (solid curves), as shown in Fig. 5.

Fig. 7
Fig. 7

Summary of the measured and the predicted spectral resolution.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R D = 0.8 λ c λ N ,
t = t A + t B + t D + t C + t A ,
t n = ( 7.4142 + d ) a n .
D max = ( 1 2 d ) a ,
f number = 7.4142 + d n ( 1 2 d ) ,
R I = 0.8 λ 4 d a f number .
R N = 0.8 λ c λ 4 d a λ c f w d .

Metrics