Abstract

The wavelengths of 19 spectral lines in the region 253–579 nm emitted by Hg pencil-type lamps were measured by Fourier-transform spectroscopy. Precise calibration of the spectra was obtained with wavelengths of 198Hg as external standards. Our recommended values should be useful as wavelength-calibration standards for moderate-resolution spectrometers at an uncertainty level of 0.0001 nm.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Reader, C. J. Sansonetti, J. M. Bridges, “Irradiances of spectral lines in mercury pencil lamps,” Appl. Opt. 35, 78–83. (1996).
    [CrossRef] [PubMed]
  2. Certain commercial products are identified in this paper to specify adequately the experimental procedure. Such identification does not imply a recommendation or endorsement by the National Institute of Standards and Technology.
  3. A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Lerner, G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet: design and performance,” J. Phys. E 20, 54–60 (1987).
    [CrossRef]
  4. V. Kaufman, “Wavelengths, energy levels, and pressure shifts in mercury-198,” J. Opt. Soc. Am. 52, 866–870 (1962).
    [CrossRef]
  5. R. C. M. Learner, A. P. Thorne, “Wavelength calibration of Fourier-transform emission spectra with applications to Fe i,” J. Opt. Soc. Am. B 5, 2045–2059 (1988).
    [CrossRef]
  6. J. Blaise, H. Chantrel, “Structures hyperfines de raies du spectre d'arc du mercure et moment quadrupolaire de 201Hg,” J. Phys. Radium 18, 193–200 (1957).
    [CrossRef]
  7. K. Burns, K. B. Adams, J. Longwell, “Interference measurements in the spectra of neon and natural mercury,” J. Opt. Soc. Am. 40, 339–344 (1950).
    [CrossRef]

1996 (1)

1988 (1)

1987 (1)

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Lerner, G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet: design and performance,” J. Phys. E 20, 54–60 (1987).
[CrossRef]

1962 (1)

1957 (1)

J. Blaise, H. Chantrel, “Structures hyperfines de raies du spectre d'arc du mercure et moment quadrupolaire de 201Hg,” J. Phys. Radium 18, 193–200 (1957).
[CrossRef]

1950 (1)

Adams, K. B.

Blaise, J.

J. Blaise, H. Chantrel, “Structures hyperfines de raies du spectre d'arc du mercure et moment quadrupolaire de 201Hg,” J. Phys. Radium 18, 193–200 (1957).
[CrossRef]

Bridges, J. M.

Burns, K.

Chantrel, H.

J. Blaise, H. Chantrel, “Structures hyperfines de raies du spectre d'arc du mercure et moment quadrupolaire de 201Hg,” J. Phys. Radium 18, 193–200 (1957).
[CrossRef]

Cox, G.

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Lerner, G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet: design and performance,” J. Phys. E 20, 54–60 (1987).
[CrossRef]

Harris, C. J.

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Lerner, G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet: design and performance,” J. Phys. E 20, 54–60 (1987).
[CrossRef]

Kaufman, V.

Learner, R. C. M.

Lerner, R. C. M.

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Lerner, G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet: design and performance,” J. Phys. E 20, 54–60 (1987).
[CrossRef]

Longwell, J.

Reader, J.

Sansonetti, C. J.

Thorne, A. P.

R. C. M. Learner, A. P. Thorne, “Wavelength calibration of Fourier-transform emission spectra with applications to Fe i,” J. Opt. Soc. Am. B 5, 2045–2059 (1988).
[CrossRef]

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Lerner, G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet: design and performance,” J. Phys. E 20, 54–60 (1987).
[CrossRef]

Wynne-Jones, I.

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Lerner, G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet: design and performance,” J. Phys. E 20, 54–60 (1987).
[CrossRef]

Appl. Opt. (1)

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (1)

J. Phys. E (1)

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Lerner, G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet: design and performance,” J. Phys. E 20, 54–60 (1987).
[CrossRef]

J. Phys. Radium (1)

J. Blaise, H. Chantrel, “Structures hyperfines de raies du spectre d'arc du mercure et moment quadrupolaire de 201Hg,” J. Phys. Radium 18, 193–200 (1957).
[CrossRef]

Other (1)

Certain commercial products are identified in this paper to specify adequately the experimental procedure. Such identification does not imply a recommendation or endorsement by the National Institute of Standards and Technology.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Hg pencil-type discharge lamp.

Fig. 2
Fig. 2

(a) Spectrum of the 404.6-nm line of natural Hg from a pencil-type lamp at an instrumental resolution of 0.03 cm−1 (0.0005 nm). (b) The same spectrum with the resolution degraded to 1.0 cm−1 (0.016 nm) by convolution with a Gaussian instrumental function.

Tables (3)

Tables Icon

Table 1 Results of the Individual Measurements for Hg Pencil-Type Lamps

Tables Icon

Table 2 Recommended Wavelengths (Air) and Wave Numbers (Vacuum) for Selected Hg Spectral Lines Emitted by Pencil-Type Lamps

Tables Icon

Table 3 Comparison of 198Hg Wavelengths Derived from Our High-Resolution Fourier-Transform Spectrum of a Natural-Hg Electrodeless Lamp with the Results Obtained by Kaufman a

Metrics