Abstract

Fiber-optic radiance microprobes, increasingly applied for measurements of internal light fields in living tissues, provide three-dimensional radiance distribution solids and radiant energy fluence rates at different depths of turbid samples. These data are, however, distorted because of an inherent feature of optical fibers: nonuniform angular sensitivity. Because of this property a radiance microprobe during a single measurement partly underestimates light from the envisaged direction and partly senses light from other directions. A theory of three-dimensional equidistant radiance measurements has been developed that provides correction for this instrumental error using the independently obtained function of the angular sensitivity of the microprobe. For the first time, as far as we know, the measurements performed with different radiance microprobes are comparable. An example of application is presented. The limitations of this theory and the prospects for this approach are discussed.

© 1996 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
General theory of three-dimensional radiance measurements with optical microprobes

N. Fukshansky-Kazarinova, L. Fukshansky, M. Kühl, and B. B. Jørgensen
Appl. Opt. 36(25) 6520-6528 (1997)

Atmospheric correction over case 2 waters with an iterative fitting algorithm

Peter E. Land and Joanna D. Haigh
Appl. Opt. 35(27) 5443-5451 (1996)

Marine asymptotic daylight field: effects of inelastic processes

Howard R. Gordon and Xin Xu
Appl. Opt. 35(21) 4194-4205 (1996)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription