Abstract

A new method for measuring the thickness of a micrometer-thin water film on ice is presented. The method is based on confocal detection of fluorescence light, emitted by a special coumarin dye dissolved in ice as well as in water. The spectral position of the fluorescence maximum depends strongly on the matrix surrounding the dye molecules. Thus the analysis of the spectra obtained while the focal position perpendicular to the liquid–ice interface is scanned provides the possibility of measuring the thickness of the water film with the vertical resolution of the confocal system. We demonstrate this principle by a model system.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Knight, “The contact angle of water on ice,” J. Colloid Interface Sci. 25, 280–284 (1966).
    [CrossRef]
  2. K. Itagaki, “Some surface phenomena of ice,” J. Colloid Interface Sci. 25,218–227 (1967).
    [CrossRef]
  3. B. Mayr, “Elektronische Messung des Wasserfilms beim Gleitvorgang,” Ph.D. dissertation (Universität Innsbruck, Tirol, Austria, 1979).
  4. J. M. Schmitt, “Compact in-line interferometer for low-coherence reflectometry,” Opt. Lett. 20, 419–421 (1995).
    [CrossRef] [PubMed]
  5. X. J. Wang, T. E. Milner, R. P. Dhond, W. V. Sorin, S.A. Newton, J. S. Nelson, “Characterization of human scalp hairs by optical low-coherence reflectometry,” Opt. Lett. 20, 524–526 (1995).
    [CrossRef] [PubMed]
  6. J. M. Schmitt, A. Knüttel, R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6041 (1993).
    [CrossRef] [PubMed]
  7. Manufacturer material data sheet, Lambda Fluoreszenztechnologie E. Koller, Graz, A-8053 (1994).
  8. K. Carlsson, P. E. Danielsson, R. Renz, A. Liljeborg, L. Majlöf, N. Åslund, “Three-dimensional microscopy using a confocal laser scanning microscope,” Opt. Lett. 10, 53–55 (1985).
    [CrossRef] [PubMed]
  9. T. Wilson, Confocal Microscopy (Academic, London, 1990), Chap. 1, p. 7.

1995 (2)

1993 (1)

1985 (1)

1967 (1)

K. Itagaki, “Some surface phenomena of ice,” J. Colloid Interface Sci. 25,218–227 (1967).
[CrossRef]

1966 (1)

A. C. Knight, “The contact angle of water on ice,” J. Colloid Interface Sci. 25, 280–284 (1966).
[CrossRef]

Åslund, N.

Bonner, R. F.

Carlsson, K.

Danielsson, P. E.

Dhond, R. P.

Itagaki, K.

K. Itagaki, “Some surface phenomena of ice,” J. Colloid Interface Sci. 25,218–227 (1967).
[CrossRef]

Knight, A. C.

A. C. Knight, “The contact angle of water on ice,” J. Colloid Interface Sci. 25, 280–284 (1966).
[CrossRef]

Knüttel, A.

Liljeborg, A.

Majlöf, L.

Mayr, B.

B. Mayr, “Elektronische Messung des Wasserfilms beim Gleitvorgang,” Ph.D. dissertation (Universität Innsbruck, Tirol, Austria, 1979).

Milner, T. E.

Nelson, J. S.

Newton, S.A.

Renz, R.

Schmitt, J. M.

Sorin, W. V.

Wang, X. J.

Wilson, T.

T. Wilson, Confocal Microscopy (Academic, London, 1990), Chap. 1, p. 7.

Appl. Opt. (1)

J. Colloid Interface Sci. (2)

A. C. Knight, “The contact angle of water on ice,” J. Colloid Interface Sci. 25, 280–284 (1966).
[CrossRef]

K. Itagaki, “Some surface phenomena of ice,” J. Colloid Interface Sci. 25,218–227 (1967).
[CrossRef]

Opt. Lett. (3)

Other (3)

T. Wilson, Confocal Microscopy (Academic, London, 1990), Chap. 1, p. 7.

Manufacturer material data sheet, Lambda Fluoreszenztechnologie E. Koller, Graz, A-8053 (1994).

B. Mayr, “Elektronische Messung des Wasserfilms beim Gleitvorgang,” Ph.D. dissertation (Universität Innsbruck, Tirol, Austria, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental setup for the confocal imaging of the coumarin fluorescence.

Fig. 2
Fig. 2

Evolution of the fluorescence spectrum of a 10−4-M coumarin-dye solution when the depth is scanned (a) immediately after being shock frozen, (b) after a 60-s heating time at 10 °C.

Metrics