Abstract

A new plastic microlens array, consisting of 900 lenslets, has been developed for the Shack Hartmann wave-front sensor. The individual lens is 300 μm × 300 μm and has a focal length of 10 mm, which provides the same focal size, 60 μm in diameter, with a constant peak intensity. One can improve the wave-front measurement accuracy by reducing the spot centroiding error by averaging a few frame memories of an image processor. A deformable mirror for testing the wave-front sensor gives an appropriate defocus and astigmatism, and the laser wave front is measured with a Shack Hartmann wave-front sensor. The measurement accuracy and reproducibility of our wave-front sensor are better than λ./20 and λ/50 (λ = 632.8 nm), respectively, in rms.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nakai, S. Kahalas, L. I. Rudakov, S. Witkowski, “Inertial confinement” Nucl. Fusion 30, 1779–1797 (1990).
    [CrossRef]
  2. J. L. Emett, W. F. Krupuke, J. I. Davis, “Laser R&D at the Lawrence Livermore National Laboratory for fusion and isotope separation applications,” IEEE J. Quantum Electron. QE-20, 591–602 (1984).
    [CrossRef]
  3. J. W. Hardy, “Adaptive optics—a progress review,” in Active and Adaptive Optical System, M. A. Ealey, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1542, 2–17 (1991).
  4. R. Shack, B. Platt, Optical Sciences Newsletter (University of Arizona, Tucson, Ariz., 1971), Vol. 5, No. 1, p. 15.
  5. R. N. Wilson, F. Franza, L. Noethe, M. Tarenghi, “The ESO off-line telescope testing technique illustrated with results for the MPIA 2.2-m telescope II,” in Proceedings of IAU Colloquium 79: Very Large Telescopes, their Instrumentation and Programs (Garching, 1984), pp. 119–130.
  6. Detailed information can be obtained from Nippon Aspherical Lens Company, 3-2-30 Minami-eguchi, Higashi Yodogawa-ku, Osaka 533, Japan.
  7. T. Y. Kane, B. M. Welsh, C. S. Gardner, L. A. Thompson, “Wavefront detector optimization for laser guided adaptive telescope,” in Active Telescope Systems, F. J. Roddier, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1114, 160–171 (1990).
  8. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970), Chap 9, p. 464.

1990

S. Nakai, S. Kahalas, L. I. Rudakov, S. Witkowski, “Inertial confinement” Nucl. Fusion 30, 1779–1797 (1990).
[CrossRef]

1984

J. L. Emett, W. F. Krupuke, J. I. Davis, “Laser R&D at the Lawrence Livermore National Laboratory for fusion and isotope separation applications,” IEEE J. Quantum Electron. QE-20, 591–602 (1984).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970), Chap 9, p. 464.

Davis, J. I.

J. L. Emett, W. F. Krupuke, J. I. Davis, “Laser R&D at the Lawrence Livermore National Laboratory for fusion and isotope separation applications,” IEEE J. Quantum Electron. QE-20, 591–602 (1984).
[CrossRef]

Emett, J. L.

J. L. Emett, W. F. Krupuke, J. I. Davis, “Laser R&D at the Lawrence Livermore National Laboratory for fusion and isotope separation applications,” IEEE J. Quantum Electron. QE-20, 591–602 (1984).
[CrossRef]

Franza, F.

R. N. Wilson, F. Franza, L. Noethe, M. Tarenghi, “The ESO off-line telescope testing technique illustrated with results for the MPIA 2.2-m telescope II,” in Proceedings of IAU Colloquium 79: Very Large Telescopes, their Instrumentation and Programs (Garching, 1984), pp. 119–130.

Gardner, C. S.

T. Y. Kane, B. M. Welsh, C. S. Gardner, L. A. Thompson, “Wavefront detector optimization for laser guided adaptive telescope,” in Active Telescope Systems, F. J. Roddier, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1114, 160–171 (1990).

Hardy, J. W.

J. W. Hardy, “Adaptive optics—a progress review,” in Active and Adaptive Optical System, M. A. Ealey, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1542, 2–17 (1991).

Kahalas, S.

S. Nakai, S. Kahalas, L. I. Rudakov, S. Witkowski, “Inertial confinement” Nucl. Fusion 30, 1779–1797 (1990).
[CrossRef]

Kane, T. Y.

T. Y. Kane, B. M. Welsh, C. S. Gardner, L. A. Thompson, “Wavefront detector optimization for laser guided adaptive telescope,” in Active Telescope Systems, F. J. Roddier, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1114, 160–171 (1990).

Krupuke, W. F.

J. L. Emett, W. F. Krupuke, J. I. Davis, “Laser R&D at the Lawrence Livermore National Laboratory for fusion and isotope separation applications,” IEEE J. Quantum Electron. QE-20, 591–602 (1984).
[CrossRef]

Nakai, S.

S. Nakai, S. Kahalas, L. I. Rudakov, S. Witkowski, “Inertial confinement” Nucl. Fusion 30, 1779–1797 (1990).
[CrossRef]

Noethe, L.

R. N. Wilson, F. Franza, L. Noethe, M. Tarenghi, “The ESO off-line telescope testing technique illustrated with results for the MPIA 2.2-m telescope II,” in Proceedings of IAU Colloquium 79: Very Large Telescopes, their Instrumentation and Programs (Garching, 1984), pp. 119–130.

Platt, B.

R. Shack, B. Platt, Optical Sciences Newsletter (University of Arizona, Tucson, Ariz., 1971), Vol. 5, No. 1, p. 15.

Rudakov, L. I.

S. Nakai, S. Kahalas, L. I. Rudakov, S. Witkowski, “Inertial confinement” Nucl. Fusion 30, 1779–1797 (1990).
[CrossRef]

Shack, R.

R. Shack, B. Platt, Optical Sciences Newsletter (University of Arizona, Tucson, Ariz., 1971), Vol. 5, No. 1, p. 15.

Tarenghi, M.

R. N. Wilson, F. Franza, L. Noethe, M. Tarenghi, “The ESO off-line telescope testing technique illustrated with results for the MPIA 2.2-m telescope II,” in Proceedings of IAU Colloquium 79: Very Large Telescopes, their Instrumentation and Programs (Garching, 1984), pp. 119–130.

Thompson, L. A.

T. Y. Kane, B. M. Welsh, C. S. Gardner, L. A. Thompson, “Wavefront detector optimization for laser guided adaptive telescope,” in Active Telescope Systems, F. J. Roddier, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1114, 160–171 (1990).

Welsh, B. M.

T. Y. Kane, B. M. Welsh, C. S. Gardner, L. A. Thompson, “Wavefront detector optimization for laser guided adaptive telescope,” in Active Telescope Systems, F. J. Roddier, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1114, 160–171 (1990).

Wilson, R. N.

R. N. Wilson, F. Franza, L. Noethe, M. Tarenghi, “The ESO off-line telescope testing technique illustrated with results for the MPIA 2.2-m telescope II,” in Proceedings of IAU Colloquium 79: Very Large Telescopes, their Instrumentation and Programs (Garching, 1984), pp. 119–130.

Witkowski, S.

S. Nakai, S. Kahalas, L. I. Rudakov, S. Witkowski, “Inertial confinement” Nucl. Fusion 30, 1779–1797 (1990).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970), Chap 9, p. 464.

IEEE J. Quantum Electron.

J. L. Emett, W. F. Krupuke, J. I. Davis, “Laser R&D at the Lawrence Livermore National Laboratory for fusion and isotope separation applications,” IEEE J. Quantum Electron. QE-20, 591–602 (1984).
[CrossRef]

Nucl. Fusion

S. Nakai, S. Kahalas, L. I. Rudakov, S. Witkowski, “Inertial confinement” Nucl. Fusion 30, 1779–1797 (1990).
[CrossRef]

Other

J. W. Hardy, “Adaptive optics—a progress review,” in Active and Adaptive Optical System, M. A. Ealey, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1542, 2–17 (1991).

R. Shack, B. Platt, Optical Sciences Newsletter (University of Arizona, Tucson, Ariz., 1971), Vol. 5, No. 1, p. 15.

R. N. Wilson, F. Franza, L. Noethe, M. Tarenghi, “The ESO off-line telescope testing technique illustrated with results for the MPIA 2.2-m telescope II,” in Proceedings of IAU Colloquium 79: Very Large Telescopes, their Instrumentation and Programs (Garching, 1984), pp. 119–130.

Detailed information can be obtained from Nippon Aspherical Lens Company, 3-2-30 Minami-eguchi, Higashi Yodogawa-ku, Osaka 533, Japan.

T. Y. Kane, B. M. Welsh, C. S. Gardner, L. A. Thompson, “Wavefront detector optimization for laser guided adaptive telescope,” in Active Telescope Systems, F. J. Roddier, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1114, 160–171 (1990).

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970), Chap 9, p. 464.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the SHWS.

Fig. 2
Fig. 2

Microscopic interferogram of the microlens array.

Fig. 3
Fig. 3

One-dimensional surface profile by the difference in the ideal lens shape.

Fig. 4
Fig. 4

Spot pattern and intensity distribution.

Fig. 5
Fig. 5

Centroiding unevenness in the case of one-frame memory only.

Fig. 6
Fig. 6

Reduction in the centroiding error of the spot by integration of frame memories.

Fig. 7
Fig. 7

Schematic of the measurement system of wave-front distortion.

Fig. 8
Fig. 8

Block diagram of the algorithm.

Fig. 9
Fig. 9

Measurement results of (a) defocus and (b) astigmatism by (left) the SHWS and (right) the Fizeau interferometer.

Tables (1)

Tables Icon

Table 1 Comparison of the Lower Zernike Coefficients a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ = Δ d / f ,
x = i = 1 m ( j = 1 n x i I i , j ) / i = 1 m ( j = 1 n I i , j ) ,
y = i = 1 m ( j = 1 n y i I i , j ) / i = 1 m ( j = 1 n I i , j ) ,

Metrics