Abstract

The concept of the temporally extrapolated absorbance method (TEAM) for optical tomography of turbid media has been verified by fundamental experiments and image reconstruction. The TEAM uses the time-resolved spectroscopic data of the reference and object to provide projection data that are processed by conventional backprojection. Optical tomography images of a phantom consisting of axisymmetric double cylinders were experimentally obtained with the TEAM and time-gating and continuous-wave (CW) methods. The reconstructed TEAM images are compared with those obtained with the time-gating and CW methods and are found to have better spatial resolution.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Oda, Y. Ito, H. Eda, T. Tamura, M. Takada, R. Abumi, K. Nagai, H. Nakagawa, M. Tamura, “Non-invasive hemoglobin oxygenation monitor and computed tomography by NIR spectrophotometry,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 284–293 (1991).
  2. B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical mammography,” Opt. Lett. 18, 1092–1094 (1993).
    [CrossRef] [PubMed]
  3. J. C. Hebden, “Time-resolved imaging of opaque and transparent spheres embedded in a highly scattering medium,” Appl. Opt. 32, 3837–3841 (1993).
    [PubMed]
  4. J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–993 (1990).
    [CrossRef] [PubMed]
  5. R. L. Barbour, H. L. Graber, Y. Wang, J.-H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed. (SPIE PressBellingham, Wash., 1993), Vol. IS11, 87–120.
  6. S. R. Arridge, “Forward and inverse problems in time-resolved infrared imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed. (SPIE PressBellingham, Wash., 1993), Vol. IS1135–64.
  7. Y. Yamada, Y. Hasegawa, H. Maki, “Simulation of time-resolved optical computer tomography imaging,” Opt. Eng. 32, 634–641 (1993).
    [CrossRef]
  8. Y. Yamada, Y. Hasegawa, Y. Yamashita, “Simulation of fan-beam-type optical computed-tomography imaging of strongly scattering and weakly absorbing media,” Appl. Opt. 32, 4808–4814 (1993).
    [CrossRef] [PubMed]
  9. O. Hazeki, M. Tamura, “Quantitative analysis of hemoglobin oxygenation state of rat brain in situ by near-infrared spectroscopy,” J. Appl. Physiol. 64, 796–802 (1988).
    [PubMed]
  10. B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
    [CrossRef] [PubMed]
  11. S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
    [CrossRef]
  12. Y. Tsunazawa, I. Oda, H. Eda, M. Takada, “A new algorithm to determine absorption and scattering coefficient from time-resolved measurement,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Modal Media: Theory, Human Studies, and Instrumentation, B. Chance, R. A. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2389, 75–86 (1995).
  13. K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
    [CrossRef]
  14. Y. Nomura, O. Hazeki, M. Tamura, “Exponential attenuation of light along a nonlinear path through the biological model,” Adv. Exp. Med. Biol. 248, 77–80 (1989).
    [CrossRef] [PubMed]
  15. Y. Hasegawa, Y. Yamada, M. Tamura, Y. Nomura, “Monte Carlo simulation of light transmission through living tissues,” Appl. Opt. 30, 4515–4520 (1991).
    [CrossRef] [PubMed]
  16. M. Firbank, M. Schweiger, D. Delpy, “Investigation of ‘light piping’ through clear regions of scattering objects,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Modal Media: Theory, Human Studies, and Instrumentation, B. Chance, R. A. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2389, 167–173 (1995).
  17. M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “Quantitation of absolute concentration change in scattering media by the time-resolved microscopic Beer–Lambert law,” Adv. Exp. Med. Biol. 345, 861–870 (1994).
    [CrossRef] [PubMed]

1995

S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

1994

K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
[CrossRef]

M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “Quantitation of absolute concentration change in scattering media by the time-resolved microscopic Beer–Lambert law,” Adv. Exp. Med. Biol. 345, 861–870 (1994).
[CrossRef] [PubMed]

1993

1991

1990

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–993 (1990).
[CrossRef] [PubMed]

1989

Y. Nomura, O. Hazeki, M. Tamura, “Exponential attenuation of light along a nonlinear path through the biological model,” Adv. Exp. Med. Biol. 248, 77–80 (1989).
[CrossRef] [PubMed]

1988

O. Hazeki, M. Tamura, “Quantitative analysis of hemoglobin oxygenation state of rat brain in situ by near-infrared spectroscopy,” J. Appl. Physiol. 64, 796–802 (1988).
[PubMed]

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Abumi, R.

I. Oda, Y. Ito, H. Eda, T. Tamura, M. Takada, R. Abumi, K. Nagai, H. Nakagawa, M. Tamura, “Non-invasive hemoglobin oxygenation monitor and computed tomography by NIR spectrophotometry,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 284–293 (1991).

Alfano, R. R.

Aronson, R.

R. L. Barbour, H. L. Graber, Y. Wang, J.-H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed. (SPIE PressBellingham, Wash., 1993), Vol. IS11, 87–120.

Arridge, S. R.

S. R. Arridge, “Forward and inverse problems in time-resolved infrared imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed. (SPIE PressBellingham, Wash., 1993), Vol. IS1135–64.

Barbieri, B.

S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Barbour, R. L.

R. L. Barbour, H. L. Graber, Y. Wang, J.-H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed. (SPIE PressBellingham, Wash., 1993), Vol. IS11, 87–120.

Boretsky, R.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Chance, B.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Chang, J.-H.

R. L. Barbour, H. L. Graber, Y. Wang, J.-H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed. (SPIE PressBellingham, Wash., 1993), Vol. IS11, 87–120.

Cohen, P.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Das, B. B.

Delpy, D.

M. Firbank, M. Schweiger, D. Delpy, “Investigation of ‘light piping’ through clear regions of scattering objects,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Modal Media: Theory, Human Studies, and Instrumentation, B. Chance, R. A. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2389, 167–173 (1995).

Eda, H.

Y. Tsunazawa, I. Oda, H. Eda, M. Takada, “A new algorithm to determine absorption and scattering coefficient from time-resolved measurement,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Modal Media: Theory, Human Studies, and Instrumentation, B. Chance, R. A. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2389, 75–86 (1995).

I. Oda, Y. Ito, H. Eda, T. Tamura, M. Takada, R. Abumi, K. Nagai, H. Nakagawa, M. Tamura, “Non-invasive hemoglobin oxygenation monitor and computed tomography by NIR spectrophotometry,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 284–293 (1991).

Fantini, S.

S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Finander, M.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Firbank, M.

M. Firbank, M. Schweiger, D. Delpy, “Investigation of ‘light piping’ through clear regions of scattering objects,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Modal Media: Theory, Human Studies, and Instrumentation, B. Chance, R. A. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2389, 167–173 (1995).

Franceschini-Fantini, M. A.

S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Furutsu, K.

K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
[CrossRef]

Graber, H. L.

R. L. Barbour, H. L. Graber, Y. Wang, J.-H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed. (SPIE PressBellingham, Wash., 1993), Vol. IS11, 87–120.

Gratton, E.

S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Greenfeld, R.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Grünbaum, F. A.

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–993 (1990).
[CrossRef] [PubMed]

Hasegawa, Y.

Hazeki, O.

Y. Nomura, O. Hazeki, M. Tamura, “Exponential attenuation of light along a nonlinear path through the biological model,” Adv. Exp. Med. Biol. 248, 77–80 (1989).
[CrossRef] [PubMed]

O. Hazeki, M. Tamura, “Quantitative analysis of hemoglobin oxygenation state of rat brain in situ by near-infrared spectroscopy,” J. Appl. Physiol. 64, 796–802 (1988).
[PubMed]

Hebden, J. C.

Ito, Y.

I. Oda, Y. Ito, H. Eda, T. Tamura, M. Takada, R. Abumi, K. Nagai, H. Nakagawa, M. Tamura, “Non-invasive hemoglobin oxygenation monitor and computed tomography by NIR spectrophotometry,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 284–293 (1991).

Kaufmann, K.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Kohn, P.

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–993 (1990).
[CrossRef] [PubMed]

Leigh, J. S.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Levy, W.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Maier, J. S.

S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Maki, H.

Y. Yamada, Y. Hasegawa, H. Maki, “Simulation of time-resolved optical computer tomography imaging,” Opt. Eng. 32, 634–641 (1993).
[CrossRef]

Miyake, H.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Nagai, K.

I. Oda, Y. Ito, H. Eda, T. Tamura, M. Takada, R. Abumi, K. Nagai, H. Nakagawa, M. Tamura, “Non-invasive hemoglobin oxygenation monitor and computed tomography by NIR spectrophotometry,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 284–293 (1991).

Nakagawa, H.

I. Oda, Y. Ito, H. Eda, T. Tamura, M. Takada, R. Abumi, K. Nagai, H. Nakagawa, M. Tamura, “Non-invasive hemoglobin oxygenation monitor and computed tomography by NIR spectrophotometry,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 284–293 (1991).

Nioka, S.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Nishimura, G.

M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “Quantitation of absolute concentration change in scattering media by the time-resolved microscopic Beer–Lambert law,” Adv. Exp. Med. Biol. 345, 861–870 (1994).
[CrossRef] [PubMed]

Nomura, Y.

Y. Hasegawa, Y. Yamada, M. Tamura, Y. Nomura, “Monte Carlo simulation of light transmission through living tissues,” Appl. Opt. 30, 4515–4520 (1991).
[CrossRef] [PubMed]

Y. Nomura, O. Hazeki, M. Tamura, “Exponential attenuation of light along a nonlinear path through the biological model,” Adv. Exp. Med. Biol. 248, 77–80 (1989).
[CrossRef] [PubMed]

Oda, I.

Y. Tsunazawa, I. Oda, H. Eda, M. Takada, “A new algorithm to determine absorption and scattering coefficient from time-resolved measurement,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Modal Media: Theory, Human Studies, and Instrumentation, B. Chance, R. A. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2389, 75–86 (1995).

I. Oda, Y. Ito, H. Eda, T. Tamura, M. Takada, R. Abumi, K. Nagai, H. Nakagawa, M. Tamura, “Non-invasive hemoglobin oxygenation monitor and computed tomography by NIR spectrophotometry,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 284–293 (1991).

Oda, M.

M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “Quantitation of absolute concentration change in scattering media by the time-resolved microscopic Beer–Lambert law,” Adv. Exp. Med. Biol. 345, 861–870 (1994).
[CrossRef] [PubMed]

Schweiger, M.

M. Firbank, M. Schweiger, D. Delpy, “Investigation of ‘light piping’ through clear regions of scattering objects,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Modal Media: Theory, Human Studies, and Instrumentation, B. Chance, R. A. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2389, 167–173 (1995).

Singer, J. R.

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–993 (1990).
[CrossRef] [PubMed]

Smith, D. S.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Takada, M.

Y. Tsunazawa, I. Oda, H. Eda, M. Takada, “A new algorithm to determine absorption and scattering coefficient from time-resolved measurement,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Modal Media: Theory, Human Studies, and Instrumentation, B. Chance, R. A. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2389, 75–86 (1995).

I. Oda, Y. Ito, H. Eda, T. Tamura, M. Takada, R. Abumi, K. Nagai, H. Nakagawa, M. Tamura, “Non-invasive hemoglobin oxygenation monitor and computed tomography by NIR spectrophotometry,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 284–293 (1991).

Tamura, M.

M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “Quantitation of absolute concentration change in scattering media by the time-resolved microscopic Beer–Lambert law,” Adv. Exp. Med. Biol. 345, 861–870 (1994).
[CrossRef] [PubMed]

Y. Hasegawa, Y. Yamada, M. Tamura, Y. Nomura, “Monte Carlo simulation of light transmission through living tissues,” Appl. Opt. 30, 4515–4520 (1991).
[CrossRef] [PubMed]

Y. Nomura, O. Hazeki, M. Tamura, “Exponential attenuation of light along a nonlinear path through the biological model,” Adv. Exp. Med. Biol. 248, 77–80 (1989).
[CrossRef] [PubMed]

O. Hazeki, M. Tamura, “Quantitative analysis of hemoglobin oxygenation state of rat brain in situ by near-infrared spectroscopy,” J. Appl. Physiol. 64, 796–802 (1988).
[PubMed]

I. Oda, Y. Ito, H. Eda, T. Tamura, M. Takada, R. Abumi, K. Nagai, H. Nakagawa, M. Tamura, “Non-invasive hemoglobin oxygenation monitor and computed tomography by NIR spectrophotometry,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 284–293 (1991).

Tamura, T.

I. Oda, Y. Ito, H. Eda, T. Tamura, M. Takada, R. Abumi, K. Nagai, H. Nakagawa, M. Tamura, “Non-invasive hemoglobin oxygenation monitor and computed tomography by NIR spectrophotometry,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 284–293 (1991).

Tsunazawa, Y.

Y. Tsunazawa, I. Oda, H. Eda, M. Takada, “A new algorithm to determine absorption and scattering coefficient from time-resolved measurement,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Modal Media: Theory, Human Studies, and Instrumentation, B. Chance, R. A. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2389, 75–86 (1995).

Walker, S. A.

S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Wang, Y.

R. L. Barbour, H. L. Graber, Y. Wang, J.-H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed. (SPIE PressBellingham, Wash., 1993), Vol. IS11, 87–120.

Yamada, Y.

K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
[CrossRef]

Y. Yamada, Y. Hasegawa, H. Maki, “Simulation of time-resolved optical computer tomography imaging,” Opt. Eng. 32, 634–641 (1993).
[CrossRef]

Y. Yamada, Y. Hasegawa, Y. Yamashita, “Simulation of fan-beam-type optical computed-tomography imaging of strongly scattering and weakly absorbing media,” Appl. Opt. 32, 4808–4814 (1993).
[CrossRef] [PubMed]

Y. Hasegawa, Y. Yamada, M. Tamura, Y. Nomura, “Monte Carlo simulation of light transmission through living tissues,” Appl. Opt. 30, 4515–4520 (1991).
[CrossRef] [PubMed]

Yamashita, Y.

M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “Quantitation of absolute concentration change in scattering media by the time-resolved microscopic Beer–Lambert law,” Adv. Exp. Med. Biol. 345, 861–870 (1994).
[CrossRef] [PubMed]

Y. Yamada, Y. Hasegawa, Y. Yamashita, “Simulation of fan-beam-type optical computed-tomography imaging of strongly scattering and weakly absorbing media,” Appl. Opt. 32, 4808–4814 (1993).
[CrossRef] [PubMed]

Yoo, K. M.

Yoshioka, H.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Young, M.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Zubelli, J. P.

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–993 (1990).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol.

Y. Nomura, O. Hazeki, M. Tamura, “Exponential attenuation of light along a nonlinear path through the biological model,” Adv. Exp. Med. Biol. 248, 77–80 (1989).
[CrossRef] [PubMed]

M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “Quantitation of absolute concentration change in scattering media by the time-resolved microscopic Beer–Lambert law,” Adv. Exp. Med. Biol. 345, 861–870 (1994).
[CrossRef] [PubMed]

Appl. Opt.

J. Appl. Physiol.

O. Hazeki, M. Tamura, “Quantitative analysis of hemoglobin oxygenation state of rat brain in situ by near-infrared spectroscopy,” J. Appl. Physiol. 64, 796–802 (1988).
[PubMed]

Opt. Eng.

S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Y. Yamada, Y. Hasegawa, H. Maki, “Simulation of time-resolved optical computer tomography imaging,” Opt. Eng. 32, 634–641 (1993).
[CrossRef]

Opt. Lett.

Phys. Rev. E

K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
[CrossRef]

Proc. Natl. Acad. Sci. USA

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Science

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–993 (1990).
[CrossRef] [PubMed]

Other

R. L. Barbour, H. L. Graber, Y. Wang, J.-H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed. (SPIE PressBellingham, Wash., 1993), Vol. IS11, 87–120.

S. R. Arridge, “Forward and inverse problems in time-resolved infrared imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed. (SPIE PressBellingham, Wash., 1993), Vol. IS1135–64.

Y. Tsunazawa, I. Oda, H. Eda, M. Takada, “A new algorithm to determine absorption and scattering coefficient from time-resolved measurement,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Modal Media: Theory, Human Studies, and Instrumentation, B. Chance, R. A. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2389, 75–86 (1995).

I. Oda, Y. Ito, H. Eda, T. Tamura, M. Takada, R. Abumi, K. Nagai, H. Nakagawa, M. Tamura, “Non-invasive hemoglobin oxygenation monitor and computed tomography by NIR spectrophotometry,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 284–293 (1991).

M. Firbank, M. Schweiger, D. Delpy, “Investigation of ‘light piping’ through clear regions of scattering objects,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Modal Media: Theory, Human Studies, and Instrumentation, B. Chance, R. A. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2389, 167–173 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the experimental setup for time-resolved measurement.

Fig. 2
Fig. 2

Phantoms used in the experiment: (a)homogeneous slab phantom, (b) inhomogeneous cylindrical phantom with the inner absorbing cylinder moving along the source–detector line, and (c) inhomogeneous axisymmetric cylindrical phantom for image reconstruction.

Fig. 3
Fig. 3

Typical measured transmittances and ΔOD and linear fitting of ΔOD in case of homogeneous slabs. The origin of the time axis is set to zero for the shortest flight time t min.

Fig. 4
Fig. 4

Comparison of measured ΔOD min by the TEAM, ΔODg by the time-gating method, and ΔOD CW by the CW method with the true values (dashed line) for the homogeneous slabs.

Fig. 5
Fig. 5

Typical measured transmittances and ΔOD and linear fitting of ΔOD in the case of inhomogeneous double cylinders.

Fig. 6
Fig. 6

Measured ΔOD's as a function of the position of the inner absorbing cylinder for ΔOD min by TEAM, ΔODg by the time-gating method, and ΔOD CW by the CW method with the true values.

Fig. 7
Fig. 7

Typical measured transmittances and ΔOD and linear fitting of ΔOD in the case of inhomogeneous coaxial double cylinders for the detector position at (a) θ = 0° and (b) θ = 45°.

Fig. 8
Fig. 8

Profiles of ΔOD's obtained by TEAM, time-gating methods, and CW methods with the true profile.

Fig. 9
Fig. 9

Reconstructed images of the difference in the absorption coefficient between the object and reference phantoms, Δμ a , with (a) TEAM, (b) the time-gating method, and (c) CW methods with (d) the true image for comparison.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ OD min = lim t t min { ln [ T obj ( t ) / T ref ( t ) ] } ,
Δ OD g = ln { [ t min t min + t g T obj ( t ) d t ] / [ t min t min + t g T ref ( t ) d t ] } ,
T ref ( t ) = T obj ( t ) exp ( Δ μ a c t ) , Δ O D ( t ) = ln [ T obj ( t ) / T ref ( t ) ] = Δ μ a c t ,

Metrics