Abstract

The principles and performance of a fiber-optic Faraday-effect magnetic-field sensor designed around an yttrium-iron-garnet (YIG) sensing element and two flux concentrators are described. The system design exploits the technique of polarization-rotated reflection in which a single polarization-maintaining optical fiber links the sensor head to the optical source and detection system. In the sensing head, ferrite flux concentrators are magnetically coupled to the YIG sensing element to achieve maximum sensitivity. The system exhibits a noise equivalent field of 6 pT/√Hz and a 3-dB bandwidth of ∼ 10 MHz.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Massey, D. C. Erickson, R. A. Kadlec, “Electromagnetic field components: their measurement using linear electro-optic and magneto-optic effects,” Appl. Opt. 14, 2712–2719 (1975).
    [CrossRef] [PubMed]
  2. K. Svantesson, H. Sohlström, U. Holm, “Magneto-optical garnet materials in fiber optic sensor systems for magnetic field sensing,” in Electro-Optic and Magneto-Optic Materials II, H. Dammann, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1274, 260–269 (1990).
  3. M. N. Deeter, “High sensitivity fiber-optic magnetic field sensors based on iron garnets,” IEEE Trans. Instrum. Meas. 44, 464–467 (1995).
    [CrossRef]
  4. M. N. Deeter, G. W. Day, T. J. Beahn, M. Manheimer, “Magneto-optic magnetic field sensor with a 1.4 pT/√Hz noise equivalent field at 1 kHz,” Electron. Lett. 29, 993–994 (1993).
    [CrossRef]
  5. A. Enokihara, M. Izutsu, T. Sueta, “Optical fiber sensors using the method of polarization-rotated reflection,” J. Lightwave Technol. LT-5, 1584–1590 (1987).
    [CrossRef]
  6. M. N. Deeter, G. W. Day, A. H. Rose, “Magnetooptic materials: crystals and glasses,” in Handbook of Laser Science and Technology, Supplement 2: Optical Materials, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1995), pp. 367–402.
  7. Flux concentrators were fabricated from a commercial nickel–zinc ferrite composition (C2050) sold by Ceramic Magnetics, Inc. The material exhibits an initial (low-frequency) permeability of 100, which rolls off to 50 at ∼100 MHz.
  8. M. N. Deeter, “Domain effects in Faraday effect sensors based on iron garnets,” Appl. Opt. 34, 655–658 (1995).
    [CrossRef] [PubMed]
  9. R. Wolfe, E. M. Gyorgy, R. A. Lieberman, V. J. Fratello, S. J. Licht, M. N. Deeter, G. W. Day, “High frequency magnetic field sensors based on the Faraday effect in garnet thick films,” Appl. Phys. Lett. 60, 2048–2050 (1992).
    [CrossRef]
  10. M. N. Deeter, S. Milián Bon, G. W. Day, G. Diercks, S. Samuelson, “Novel bulk iron garnets for magneto-optic magnetic field sensing,” IEEE Trans. Magn. 30, 4464–4466 (1994).
    [CrossRef]

1995 (2)

M. N. Deeter, “High sensitivity fiber-optic magnetic field sensors based on iron garnets,” IEEE Trans. Instrum. Meas. 44, 464–467 (1995).
[CrossRef]

M. N. Deeter, “Domain effects in Faraday effect sensors based on iron garnets,” Appl. Opt. 34, 655–658 (1995).
[CrossRef] [PubMed]

1994 (1)

M. N. Deeter, S. Milián Bon, G. W. Day, G. Diercks, S. Samuelson, “Novel bulk iron garnets for magneto-optic magnetic field sensing,” IEEE Trans. Magn. 30, 4464–4466 (1994).
[CrossRef]

1993 (1)

M. N. Deeter, G. W. Day, T. J. Beahn, M. Manheimer, “Magneto-optic magnetic field sensor with a 1.4 pT/√Hz noise equivalent field at 1 kHz,” Electron. Lett. 29, 993–994 (1993).
[CrossRef]

1992 (1)

R. Wolfe, E. M. Gyorgy, R. A. Lieberman, V. J. Fratello, S. J. Licht, M. N. Deeter, G. W. Day, “High frequency magnetic field sensors based on the Faraday effect in garnet thick films,” Appl. Phys. Lett. 60, 2048–2050 (1992).
[CrossRef]

1987 (1)

A. Enokihara, M. Izutsu, T. Sueta, “Optical fiber sensors using the method of polarization-rotated reflection,” J. Lightwave Technol. LT-5, 1584–1590 (1987).
[CrossRef]

1975 (1)

Beahn, T. J.

M. N. Deeter, G. W. Day, T. J. Beahn, M. Manheimer, “Magneto-optic magnetic field sensor with a 1.4 pT/√Hz noise equivalent field at 1 kHz,” Electron. Lett. 29, 993–994 (1993).
[CrossRef]

Day, G. W.

M. N. Deeter, S. Milián Bon, G. W. Day, G. Diercks, S. Samuelson, “Novel bulk iron garnets for magneto-optic magnetic field sensing,” IEEE Trans. Magn. 30, 4464–4466 (1994).
[CrossRef]

M. N. Deeter, G. W. Day, T. J. Beahn, M. Manheimer, “Magneto-optic magnetic field sensor with a 1.4 pT/√Hz noise equivalent field at 1 kHz,” Electron. Lett. 29, 993–994 (1993).
[CrossRef]

R. Wolfe, E. M. Gyorgy, R. A. Lieberman, V. J. Fratello, S. J. Licht, M. N. Deeter, G. W. Day, “High frequency magnetic field sensors based on the Faraday effect in garnet thick films,” Appl. Phys. Lett. 60, 2048–2050 (1992).
[CrossRef]

M. N. Deeter, G. W. Day, A. H. Rose, “Magnetooptic materials: crystals and glasses,” in Handbook of Laser Science and Technology, Supplement 2: Optical Materials, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1995), pp. 367–402.

Deeter, M. N.

M. N. Deeter, “High sensitivity fiber-optic magnetic field sensors based on iron garnets,” IEEE Trans. Instrum. Meas. 44, 464–467 (1995).
[CrossRef]

M. N. Deeter, “Domain effects in Faraday effect sensors based on iron garnets,” Appl. Opt. 34, 655–658 (1995).
[CrossRef] [PubMed]

M. N. Deeter, S. Milián Bon, G. W. Day, G. Diercks, S. Samuelson, “Novel bulk iron garnets for magneto-optic magnetic field sensing,” IEEE Trans. Magn. 30, 4464–4466 (1994).
[CrossRef]

M. N. Deeter, G. W. Day, T. J. Beahn, M. Manheimer, “Magneto-optic magnetic field sensor with a 1.4 pT/√Hz noise equivalent field at 1 kHz,” Electron. Lett. 29, 993–994 (1993).
[CrossRef]

R. Wolfe, E. M. Gyorgy, R. A. Lieberman, V. J. Fratello, S. J. Licht, M. N. Deeter, G. W. Day, “High frequency magnetic field sensors based on the Faraday effect in garnet thick films,” Appl. Phys. Lett. 60, 2048–2050 (1992).
[CrossRef]

M. N. Deeter, G. W. Day, A. H. Rose, “Magnetooptic materials: crystals and glasses,” in Handbook of Laser Science and Technology, Supplement 2: Optical Materials, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1995), pp. 367–402.

Diercks, G.

M. N. Deeter, S. Milián Bon, G. W. Day, G. Diercks, S. Samuelson, “Novel bulk iron garnets for magneto-optic magnetic field sensing,” IEEE Trans. Magn. 30, 4464–4466 (1994).
[CrossRef]

Enokihara, A.

A. Enokihara, M. Izutsu, T. Sueta, “Optical fiber sensors using the method of polarization-rotated reflection,” J. Lightwave Technol. LT-5, 1584–1590 (1987).
[CrossRef]

Erickson, D. C.

Fratello, V. J.

R. Wolfe, E. M. Gyorgy, R. A. Lieberman, V. J. Fratello, S. J. Licht, M. N. Deeter, G. W. Day, “High frequency magnetic field sensors based on the Faraday effect in garnet thick films,” Appl. Phys. Lett. 60, 2048–2050 (1992).
[CrossRef]

Gyorgy, E. M.

R. Wolfe, E. M. Gyorgy, R. A. Lieberman, V. J. Fratello, S. J. Licht, M. N. Deeter, G. W. Day, “High frequency magnetic field sensors based on the Faraday effect in garnet thick films,” Appl. Phys. Lett. 60, 2048–2050 (1992).
[CrossRef]

Holm, U.

K. Svantesson, H. Sohlström, U. Holm, “Magneto-optical garnet materials in fiber optic sensor systems for magnetic field sensing,” in Electro-Optic and Magneto-Optic Materials II, H. Dammann, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1274, 260–269 (1990).

Izutsu, M.

A. Enokihara, M. Izutsu, T. Sueta, “Optical fiber sensors using the method of polarization-rotated reflection,” J. Lightwave Technol. LT-5, 1584–1590 (1987).
[CrossRef]

Kadlec, R. A.

Licht, S. J.

R. Wolfe, E. M. Gyorgy, R. A. Lieberman, V. J. Fratello, S. J. Licht, M. N. Deeter, G. W. Day, “High frequency magnetic field sensors based on the Faraday effect in garnet thick films,” Appl. Phys. Lett. 60, 2048–2050 (1992).
[CrossRef]

Lieberman, R. A.

R. Wolfe, E. M. Gyorgy, R. A. Lieberman, V. J. Fratello, S. J. Licht, M. N. Deeter, G. W. Day, “High frequency magnetic field sensors based on the Faraday effect in garnet thick films,” Appl. Phys. Lett. 60, 2048–2050 (1992).
[CrossRef]

Manheimer, M.

M. N. Deeter, G. W. Day, T. J. Beahn, M. Manheimer, “Magneto-optic magnetic field sensor with a 1.4 pT/√Hz noise equivalent field at 1 kHz,” Electron. Lett. 29, 993–994 (1993).
[CrossRef]

Massey, G. A.

Milián Bon, S.

M. N. Deeter, S. Milián Bon, G. W. Day, G. Diercks, S. Samuelson, “Novel bulk iron garnets for magneto-optic magnetic field sensing,” IEEE Trans. Magn. 30, 4464–4466 (1994).
[CrossRef]

Rose, A. H.

M. N. Deeter, G. W. Day, A. H. Rose, “Magnetooptic materials: crystals and glasses,” in Handbook of Laser Science and Technology, Supplement 2: Optical Materials, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1995), pp. 367–402.

Samuelson, S.

M. N. Deeter, S. Milián Bon, G. W. Day, G. Diercks, S. Samuelson, “Novel bulk iron garnets for magneto-optic magnetic field sensing,” IEEE Trans. Magn. 30, 4464–4466 (1994).
[CrossRef]

Sohlström, H.

K. Svantesson, H. Sohlström, U. Holm, “Magneto-optical garnet materials in fiber optic sensor systems for magnetic field sensing,” in Electro-Optic and Magneto-Optic Materials II, H. Dammann, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1274, 260–269 (1990).

Sueta, T.

A. Enokihara, M. Izutsu, T. Sueta, “Optical fiber sensors using the method of polarization-rotated reflection,” J. Lightwave Technol. LT-5, 1584–1590 (1987).
[CrossRef]

Svantesson, K.

K. Svantesson, H. Sohlström, U. Holm, “Magneto-optical garnet materials in fiber optic sensor systems for magnetic field sensing,” in Electro-Optic and Magneto-Optic Materials II, H. Dammann, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1274, 260–269 (1990).

Wolfe, R.

R. Wolfe, E. M. Gyorgy, R. A. Lieberman, V. J. Fratello, S. J. Licht, M. N. Deeter, G. W. Day, “High frequency magnetic field sensors based on the Faraday effect in garnet thick films,” Appl. Phys. Lett. 60, 2048–2050 (1992).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. Wolfe, E. M. Gyorgy, R. A. Lieberman, V. J. Fratello, S. J. Licht, M. N. Deeter, G. W. Day, “High frequency magnetic field sensors based on the Faraday effect in garnet thick films,” Appl. Phys. Lett. 60, 2048–2050 (1992).
[CrossRef]

Electron. Lett. (1)

M. N. Deeter, G. W. Day, T. J. Beahn, M. Manheimer, “Magneto-optic magnetic field sensor with a 1.4 pT/√Hz noise equivalent field at 1 kHz,” Electron. Lett. 29, 993–994 (1993).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

M. N. Deeter, “High sensitivity fiber-optic magnetic field sensors based on iron garnets,” IEEE Trans. Instrum. Meas. 44, 464–467 (1995).
[CrossRef]

IEEE Trans. Magn. (1)

M. N. Deeter, S. Milián Bon, G. W. Day, G. Diercks, S. Samuelson, “Novel bulk iron garnets for magneto-optic magnetic field sensing,” IEEE Trans. Magn. 30, 4464–4466 (1994).
[CrossRef]

J. Lightwave Technol. (1)

A. Enokihara, M. Izutsu, T. Sueta, “Optical fiber sensors using the method of polarization-rotated reflection,” J. Lightwave Technol. LT-5, 1584–1590 (1987).
[CrossRef]

Other (3)

M. N. Deeter, G. W. Day, A. H. Rose, “Magnetooptic materials: crystals and glasses,” in Handbook of Laser Science and Technology, Supplement 2: Optical Materials, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1995), pp. 367–402.

Flux concentrators were fabricated from a commercial nickel–zinc ferrite composition (C2050) sold by Ceramic Magnetics, Inc. The material exhibits an initial (low-frequency) permeability of 100, which rolls off to 50 at ∼100 MHz.

K. Svantesson, H. Sohlström, U. Holm, “Magneto-optical garnet materials in fiber optic sensor systems for magnetic field sensing,” in Electro-Optic and Magneto-Optic Materials II, H. Dammann, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1274, 260–269 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Polarization-rotated reflection sensor system: S, source (laser or light-emitting diode); HWP, half-wave plate; P, polarizer; BS, beam splitter; L, lenses; FP, high-birefringence fiber pigtail; QWP, quarter-wave plates; FR, Faraday rotator; M, mirror; PBS, Wollaston polarizing beam splitter; D, detectors.

Fig. 2
Fig. 2

Sensor head. Packaging is not shown.

Fig. 3
Fig. 3

Response function curves for the head in the maximum sensitivity (d = 0) configuration and maximum field |μ0 H max| = 1.9 mT.

Fig. 4
Fig. 4

Sensor output spectrum recorded while a 1.1-nT test signal is applied to the head at 2 kHz.

Fig. 5
Fig. 5

Frequency response of the sensor head. The field amplitude was decremented in steps of 10 dB between runs. The top curve was recorded at a field strength of 6.8 μT (rms).

Metrics