Abstract

The current-voltage (I–V) characteristics of metal–semiconductor–metal (MSM) photodetectors under various light intensities are examined. The current shows an initial increase followed by saturation and a subsequent sharp increase as bias increases. We propose a theoretical model for bias dependence in all regions of operation except for breakdown, based on drift collection of carriers in the depleted regions under the contacts and diffusion and recombination in the undepleted region. This is based on the solution of the diffusion equation in the undepleted area between the two contacts of the MSM structure. The solution is subject to boundary conditions on excess minority carriers at the cathode end and continuity of current at the anode end. The latter is written in terms of a parameter, denoted as effective diffusion length, which describes the collection efficiency of carriers at the anode. The closed-form solution thus derived corroborates with physical expectations in several limiting cases. To compare theory with experiment, we propose methods to extract parameters that are used to normalize the I–V curves and calculate depletion widths under different light intensities, from current- and capacitance-voltage measurements. A close match between experimental and theoretical results is observed, and possible breakdown mechanisms are discussed.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ito, O. Wada, “Low dark current GaAs metal– semiconductor–metal (MSM) photodiodes using WSix contacts,” IEEE J. Quantum Electron. QE-22, 1073–1077 (1986).
    [CrossRef]
  2. C. W. Slayman, L. Figueroa, “Frequency and pulse response of a novel high speed interdigital surface photocon-ductor (IDPC),” IEEE Trans. Electron Devices Lett. EDL-2, 112–114 (1981).
    [CrossRef]
  3. B. J. Van Zeghbroeck, W. Patrick, J. Halbout, P. Vettiger, “105 GHz bandwidth metal–semiconductor–metal photodiode,” IEEE Trans. Electron Devices Lett. 9, 527–529 (1988).
    [CrossRef]
  4. W. Roth, H. Schumacher, J. Kluge, H. J. Geelen, H. Beneking, “The DSI diode: a fast larger-area optoelectronic detector,” IEEE Trans. Electron Devices ED-32, 1034–1036 (1985).
    [CrossRef]
  5. C. J. Wei, H.-J. Klein, H. Beneking, “Symmetrical Mott barrier as a fast photodetector,” Electron. Lett. 17, 688–689 (1981).
    [CrossRef]
  6. O. Wada, H. Hamaguchi, M. Makiuchi, T. Kumai, M. Ito, K. Nakai, T. Horimatsu, T. Sakurai, “Monolithic four-channel photodiode/amplifier receiver array integrated on a GaAs substrate,” J. Lightwave Technol. LT-4, 1694–1703 (1986).
    [CrossRef]
  7. J. B. D. Soole, H. Schumacher, “GaAs metal–semiconductor–metal photodetectors for long wavelength optical communications,” IEEE J. Quantum Electron. 27, 737–752 (1991).
    [CrossRef]
  8. J. Lu, R. Surridge, G. Pakulski, H. van Driel, J. M. Xu, “Studies of high speed metal–semiconductor–metal photodetector with a GaAs/AlGaAs/GaAs heterostructure,” IEEE Trans. Electron Devices 40, 1087–1092 (1993).
    [CrossRef]
  9. K. Litvin, J. Burm, D. Woodard, W. Schaff, L. F. Eastman, “High speed optical detector for monolithic millimeter wave integrated circuits,” in IEEE MTT-S International Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, New York, 1993), Vol. 2, pp. 1063–1066.
    [CrossRef]
  10. S. Y. Chou, Y. Liu, “Nanoscale terahertz metal–semiconductor–metal photodetectors,” IEEE J. Quantum Electron. 28, 2358–2368 (1992).
    [CrossRef]
  11. T. Sugeta, T. Urisu, S. Sakata, Y. Mizushima, “Metal– semiconductor–metal photodetector for high speed optoelectronic circuits,” Jpn. J. Appl. Phys., Suppl. 19-1, 19, 459–464 (1980).
  12. S. Kawanishi, Y. Yamabayashi, T. Takada, H. Takada, M. Saruwatwri, K. Nakagawa, “2Gb/s operation of an optical-clock-driven monolithically integrated GaAs D-flip-flip with metal-semiconductor-metal photodetectors for high-speed synchronous circuits,” IEEE Photon. Technol. Lett. 4, 160–163 (1992).
    [CrossRef]
  13. Y. Nitta, J. Ohta, M. Takahashi, S. Tai, K. Kyuma, “Optical neurochip with learning capability,” IEEE Photon. Technol. Lett. 4, 247–250 (1992).
    [CrossRef]
  14. E. Sano, “A device model for metal–semiconductor–metal photodetectors and its applications to optoelectronic integrated circuit simulation,” IEEE Trans. Electron Devices, 37, 1964–1968 (1990).
    [CrossRef]
  15. E. Sano, “Two dimensional ensemble Monte Carlo calculation of pulse responses of submicrometer GaAs metal–semiconductor–metal photodetectors,” IEEE Trans. Electron Devices 38, 2075–2081 (1991).
    [CrossRef]
  16. S. M. Sze, D. J. Coleman, A. Loya, “Current transport in metal–semiconductor–metal (MSM) structures,” Solid-State Electron. 14, 1209–1218 (1971).
    [CrossRef]
  17. H. K. Henisch, Semiconductor Contacts (Oxford U. Press, London, 1988).
  18. S. M. Sze, G. Gibbons, “Avalanche breakdown of abrupt and linearly graded p-n junctions in Ge, Si, GaAs, and GaP,” Appl. Phys. Lett. 8, 111–113 (1966).
    [CrossRef]
  19. S. Wang, Fundamentals of Semiconductor Theory and Device Physics (Prentice-Hall, Englewood Cliffs, N.J., 1989), Chap. 10.6.

1993 (1)

J. Lu, R. Surridge, G. Pakulski, H. van Driel, J. M. Xu, “Studies of high speed metal–semiconductor–metal photodetector with a GaAs/AlGaAs/GaAs heterostructure,” IEEE Trans. Electron Devices 40, 1087–1092 (1993).
[CrossRef]

1992 (3)

S. Y. Chou, Y. Liu, “Nanoscale terahertz metal–semiconductor–metal photodetectors,” IEEE J. Quantum Electron. 28, 2358–2368 (1992).
[CrossRef]

S. Kawanishi, Y. Yamabayashi, T. Takada, H. Takada, M. Saruwatwri, K. Nakagawa, “2Gb/s operation of an optical-clock-driven monolithically integrated GaAs D-flip-flip with metal-semiconductor-metal photodetectors for high-speed synchronous circuits,” IEEE Photon. Technol. Lett. 4, 160–163 (1992).
[CrossRef]

Y. Nitta, J. Ohta, M. Takahashi, S. Tai, K. Kyuma, “Optical neurochip with learning capability,” IEEE Photon. Technol. Lett. 4, 247–250 (1992).
[CrossRef]

1991 (2)

E. Sano, “Two dimensional ensemble Monte Carlo calculation of pulse responses of submicrometer GaAs metal–semiconductor–metal photodetectors,” IEEE Trans. Electron Devices 38, 2075–2081 (1991).
[CrossRef]

J. B. D. Soole, H. Schumacher, “GaAs metal–semiconductor–metal photodetectors for long wavelength optical communications,” IEEE J. Quantum Electron. 27, 737–752 (1991).
[CrossRef]

1990 (1)

E. Sano, “A device model for metal–semiconductor–metal photodetectors and its applications to optoelectronic integrated circuit simulation,” IEEE Trans. Electron Devices, 37, 1964–1968 (1990).
[CrossRef]

1988 (1)

B. J. Van Zeghbroeck, W. Patrick, J. Halbout, P. Vettiger, “105 GHz bandwidth metal–semiconductor–metal photodiode,” IEEE Trans. Electron Devices Lett. 9, 527–529 (1988).
[CrossRef]

1986 (2)

M. Ito, O. Wada, “Low dark current GaAs metal– semiconductor–metal (MSM) photodiodes using WSix contacts,” IEEE J. Quantum Electron. QE-22, 1073–1077 (1986).
[CrossRef]

O. Wada, H. Hamaguchi, M. Makiuchi, T. Kumai, M. Ito, K. Nakai, T. Horimatsu, T. Sakurai, “Monolithic four-channel photodiode/amplifier receiver array integrated on a GaAs substrate,” J. Lightwave Technol. LT-4, 1694–1703 (1986).
[CrossRef]

1985 (1)

W. Roth, H. Schumacher, J. Kluge, H. J. Geelen, H. Beneking, “The DSI diode: a fast larger-area optoelectronic detector,” IEEE Trans. Electron Devices ED-32, 1034–1036 (1985).
[CrossRef]

1981 (2)

C. J. Wei, H.-J. Klein, H. Beneking, “Symmetrical Mott barrier as a fast photodetector,” Electron. Lett. 17, 688–689 (1981).
[CrossRef]

C. W. Slayman, L. Figueroa, “Frequency and pulse response of a novel high speed interdigital surface photocon-ductor (IDPC),” IEEE Trans. Electron Devices Lett. EDL-2, 112–114 (1981).
[CrossRef]

1980 (1)

T. Sugeta, T. Urisu, S. Sakata, Y. Mizushima, “Metal– semiconductor–metal photodetector for high speed optoelectronic circuits,” Jpn. J. Appl. Phys., Suppl. 19-1, 19, 459–464 (1980).

1971 (1)

S. M. Sze, D. J. Coleman, A. Loya, “Current transport in metal–semiconductor–metal (MSM) structures,” Solid-State Electron. 14, 1209–1218 (1971).
[CrossRef]

1966 (1)

S. M. Sze, G. Gibbons, “Avalanche breakdown of abrupt and linearly graded p-n junctions in Ge, Si, GaAs, and GaP,” Appl. Phys. Lett. 8, 111–113 (1966).
[CrossRef]

Beneking, H.

W. Roth, H. Schumacher, J. Kluge, H. J. Geelen, H. Beneking, “The DSI diode: a fast larger-area optoelectronic detector,” IEEE Trans. Electron Devices ED-32, 1034–1036 (1985).
[CrossRef]

C. J. Wei, H.-J. Klein, H. Beneking, “Symmetrical Mott barrier as a fast photodetector,” Electron. Lett. 17, 688–689 (1981).
[CrossRef]

Burm, J.

K. Litvin, J. Burm, D. Woodard, W. Schaff, L. F. Eastman, “High speed optical detector for monolithic millimeter wave integrated circuits,” in IEEE MTT-S International Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, New York, 1993), Vol. 2, pp. 1063–1066.
[CrossRef]

Chou, S. Y.

S. Y. Chou, Y. Liu, “Nanoscale terahertz metal–semiconductor–metal photodetectors,” IEEE J. Quantum Electron. 28, 2358–2368 (1992).
[CrossRef]

Coleman, D. J.

S. M. Sze, D. J. Coleman, A. Loya, “Current transport in metal–semiconductor–metal (MSM) structures,” Solid-State Electron. 14, 1209–1218 (1971).
[CrossRef]

Eastman, L. F.

K. Litvin, J. Burm, D. Woodard, W. Schaff, L. F. Eastman, “High speed optical detector for monolithic millimeter wave integrated circuits,” in IEEE MTT-S International Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, New York, 1993), Vol. 2, pp. 1063–1066.
[CrossRef]

Figueroa, L.

C. W. Slayman, L. Figueroa, “Frequency and pulse response of a novel high speed interdigital surface photocon-ductor (IDPC),” IEEE Trans. Electron Devices Lett. EDL-2, 112–114 (1981).
[CrossRef]

Geelen, H. J.

W. Roth, H. Schumacher, J. Kluge, H. J. Geelen, H. Beneking, “The DSI diode: a fast larger-area optoelectronic detector,” IEEE Trans. Electron Devices ED-32, 1034–1036 (1985).
[CrossRef]

Gibbons, G.

S. M. Sze, G. Gibbons, “Avalanche breakdown of abrupt and linearly graded p-n junctions in Ge, Si, GaAs, and GaP,” Appl. Phys. Lett. 8, 111–113 (1966).
[CrossRef]

Halbout, J.

B. J. Van Zeghbroeck, W. Patrick, J. Halbout, P. Vettiger, “105 GHz bandwidth metal–semiconductor–metal photodiode,” IEEE Trans. Electron Devices Lett. 9, 527–529 (1988).
[CrossRef]

Hamaguchi, H.

O. Wada, H. Hamaguchi, M. Makiuchi, T. Kumai, M. Ito, K. Nakai, T. Horimatsu, T. Sakurai, “Monolithic four-channel photodiode/amplifier receiver array integrated on a GaAs substrate,” J. Lightwave Technol. LT-4, 1694–1703 (1986).
[CrossRef]

Henisch, H. K.

H. K. Henisch, Semiconductor Contacts (Oxford U. Press, London, 1988).

Horimatsu, T.

O. Wada, H. Hamaguchi, M. Makiuchi, T. Kumai, M. Ito, K. Nakai, T. Horimatsu, T. Sakurai, “Monolithic four-channel photodiode/amplifier receiver array integrated on a GaAs substrate,” J. Lightwave Technol. LT-4, 1694–1703 (1986).
[CrossRef]

Ito, M.

O. Wada, H. Hamaguchi, M. Makiuchi, T. Kumai, M. Ito, K. Nakai, T. Horimatsu, T. Sakurai, “Monolithic four-channel photodiode/amplifier receiver array integrated on a GaAs substrate,” J. Lightwave Technol. LT-4, 1694–1703 (1986).
[CrossRef]

M. Ito, O. Wada, “Low dark current GaAs metal– semiconductor–metal (MSM) photodiodes using WSix contacts,” IEEE J. Quantum Electron. QE-22, 1073–1077 (1986).
[CrossRef]

Kawanishi, S.

S. Kawanishi, Y. Yamabayashi, T. Takada, H. Takada, M. Saruwatwri, K. Nakagawa, “2Gb/s operation of an optical-clock-driven monolithically integrated GaAs D-flip-flip with metal-semiconductor-metal photodetectors for high-speed synchronous circuits,” IEEE Photon. Technol. Lett. 4, 160–163 (1992).
[CrossRef]

Klein, H.-J.

C. J. Wei, H.-J. Klein, H. Beneking, “Symmetrical Mott barrier as a fast photodetector,” Electron. Lett. 17, 688–689 (1981).
[CrossRef]

Kluge, J.

W. Roth, H. Schumacher, J. Kluge, H. J. Geelen, H. Beneking, “The DSI diode: a fast larger-area optoelectronic detector,” IEEE Trans. Electron Devices ED-32, 1034–1036 (1985).
[CrossRef]

Kumai, T.

O. Wada, H. Hamaguchi, M. Makiuchi, T. Kumai, M. Ito, K. Nakai, T. Horimatsu, T. Sakurai, “Monolithic four-channel photodiode/amplifier receiver array integrated on a GaAs substrate,” J. Lightwave Technol. LT-4, 1694–1703 (1986).
[CrossRef]

Kyuma, K.

Y. Nitta, J. Ohta, M. Takahashi, S. Tai, K. Kyuma, “Optical neurochip with learning capability,” IEEE Photon. Technol. Lett. 4, 247–250 (1992).
[CrossRef]

Litvin, K.

K. Litvin, J. Burm, D. Woodard, W. Schaff, L. F. Eastman, “High speed optical detector for monolithic millimeter wave integrated circuits,” in IEEE MTT-S International Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, New York, 1993), Vol. 2, pp. 1063–1066.
[CrossRef]

Liu, Y.

S. Y. Chou, Y. Liu, “Nanoscale terahertz metal–semiconductor–metal photodetectors,” IEEE J. Quantum Electron. 28, 2358–2368 (1992).
[CrossRef]

Loya, A.

S. M. Sze, D. J. Coleman, A. Loya, “Current transport in metal–semiconductor–metal (MSM) structures,” Solid-State Electron. 14, 1209–1218 (1971).
[CrossRef]

Lu, J.

J. Lu, R. Surridge, G. Pakulski, H. van Driel, J. M. Xu, “Studies of high speed metal–semiconductor–metal photodetector with a GaAs/AlGaAs/GaAs heterostructure,” IEEE Trans. Electron Devices 40, 1087–1092 (1993).
[CrossRef]

Makiuchi, M.

O. Wada, H. Hamaguchi, M. Makiuchi, T. Kumai, M. Ito, K. Nakai, T. Horimatsu, T. Sakurai, “Monolithic four-channel photodiode/amplifier receiver array integrated on a GaAs substrate,” J. Lightwave Technol. LT-4, 1694–1703 (1986).
[CrossRef]

Mizushima, Y.

T. Sugeta, T. Urisu, S. Sakata, Y. Mizushima, “Metal– semiconductor–metal photodetector for high speed optoelectronic circuits,” Jpn. J. Appl. Phys., Suppl. 19-1, 19, 459–464 (1980).

Nakagawa, K.

S. Kawanishi, Y. Yamabayashi, T. Takada, H. Takada, M. Saruwatwri, K. Nakagawa, “2Gb/s operation of an optical-clock-driven monolithically integrated GaAs D-flip-flip with metal-semiconductor-metal photodetectors for high-speed synchronous circuits,” IEEE Photon. Technol. Lett. 4, 160–163 (1992).
[CrossRef]

Nakai, K.

O. Wada, H. Hamaguchi, M. Makiuchi, T. Kumai, M. Ito, K. Nakai, T. Horimatsu, T. Sakurai, “Monolithic four-channel photodiode/amplifier receiver array integrated on a GaAs substrate,” J. Lightwave Technol. LT-4, 1694–1703 (1986).
[CrossRef]

Nitta, Y.

Y. Nitta, J. Ohta, M. Takahashi, S. Tai, K. Kyuma, “Optical neurochip with learning capability,” IEEE Photon. Technol. Lett. 4, 247–250 (1992).
[CrossRef]

Ohta, J.

Y. Nitta, J. Ohta, M. Takahashi, S. Tai, K. Kyuma, “Optical neurochip with learning capability,” IEEE Photon. Technol. Lett. 4, 247–250 (1992).
[CrossRef]

Pakulski, G.

J. Lu, R. Surridge, G. Pakulski, H. van Driel, J. M. Xu, “Studies of high speed metal–semiconductor–metal photodetector with a GaAs/AlGaAs/GaAs heterostructure,” IEEE Trans. Electron Devices 40, 1087–1092 (1993).
[CrossRef]

Patrick, W.

B. J. Van Zeghbroeck, W. Patrick, J. Halbout, P. Vettiger, “105 GHz bandwidth metal–semiconductor–metal photodiode,” IEEE Trans. Electron Devices Lett. 9, 527–529 (1988).
[CrossRef]

Roth, W.

W. Roth, H. Schumacher, J. Kluge, H. J. Geelen, H. Beneking, “The DSI diode: a fast larger-area optoelectronic detector,” IEEE Trans. Electron Devices ED-32, 1034–1036 (1985).
[CrossRef]

Sakata, S.

T. Sugeta, T. Urisu, S. Sakata, Y. Mizushima, “Metal– semiconductor–metal photodetector for high speed optoelectronic circuits,” Jpn. J. Appl. Phys., Suppl. 19-1, 19, 459–464 (1980).

Sakurai, T.

O. Wada, H. Hamaguchi, M. Makiuchi, T. Kumai, M. Ito, K. Nakai, T. Horimatsu, T. Sakurai, “Monolithic four-channel photodiode/amplifier receiver array integrated on a GaAs substrate,” J. Lightwave Technol. LT-4, 1694–1703 (1986).
[CrossRef]

Sano, E.

E. Sano, “Two dimensional ensemble Monte Carlo calculation of pulse responses of submicrometer GaAs metal–semiconductor–metal photodetectors,” IEEE Trans. Electron Devices 38, 2075–2081 (1991).
[CrossRef]

E. Sano, “A device model for metal–semiconductor–metal photodetectors and its applications to optoelectronic integrated circuit simulation,” IEEE Trans. Electron Devices, 37, 1964–1968 (1990).
[CrossRef]

Saruwatwri, M.

S. Kawanishi, Y. Yamabayashi, T. Takada, H. Takada, M. Saruwatwri, K. Nakagawa, “2Gb/s operation of an optical-clock-driven monolithically integrated GaAs D-flip-flip with metal-semiconductor-metal photodetectors for high-speed synchronous circuits,” IEEE Photon. Technol. Lett. 4, 160–163 (1992).
[CrossRef]

Schaff, W.

K. Litvin, J. Burm, D. Woodard, W. Schaff, L. F. Eastman, “High speed optical detector for monolithic millimeter wave integrated circuits,” in IEEE MTT-S International Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, New York, 1993), Vol. 2, pp. 1063–1066.
[CrossRef]

Schumacher, H.

J. B. D. Soole, H. Schumacher, “GaAs metal–semiconductor–metal photodetectors for long wavelength optical communications,” IEEE J. Quantum Electron. 27, 737–752 (1991).
[CrossRef]

W. Roth, H. Schumacher, J. Kluge, H. J. Geelen, H. Beneking, “The DSI diode: a fast larger-area optoelectronic detector,” IEEE Trans. Electron Devices ED-32, 1034–1036 (1985).
[CrossRef]

Slayman, C. W.

C. W. Slayman, L. Figueroa, “Frequency and pulse response of a novel high speed interdigital surface photocon-ductor (IDPC),” IEEE Trans. Electron Devices Lett. EDL-2, 112–114 (1981).
[CrossRef]

Soole, J. B. D.

J. B. D. Soole, H. Schumacher, “GaAs metal–semiconductor–metal photodetectors for long wavelength optical communications,” IEEE J. Quantum Electron. 27, 737–752 (1991).
[CrossRef]

Sugeta, T.

T. Sugeta, T. Urisu, S. Sakata, Y. Mizushima, “Metal– semiconductor–metal photodetector for high speed optoelectronic circuits,” Jpn. J. Appl. Phys., Suppl. 19-1, 19, 459–464 (1980).

Surridge, R.

J. Lu, R. Surridge, G. Pakulski, H. van Driel, J. M. Xu, “Studies of high speed metal–semiconductor–metal photodetector with a GaAs/AlGaAs/GaAs heterostructure,” IEEE Trans. Electron Devices 40, 1087–1092 (1993).
[CrossRef]

Sze, S. M.

S. M. Sze, D. J. Coleman, A. Loya, “Current transport in metal–semiconductor–metal (MSM) structures,” Solid-State Electron. 14, 1209–1218 (1971).
[CrossRef]

S. M. Sze, G. Gibbons, “Avalanche breakdown of abrupt and linearly graded p-n junctions in Ge, Si, GaAs, and GaP,” Appl. Phys. Lett. 8, 111–113 (1966).
[CrossRef]

Tai, S.

Y. Nitta, J. Ohta, M. Takahashi, S. Tai, K. Kyuma, “Optical neurochip with learning capability,” IEEE Photon. Technol. Lett. 4, 247–250 (1992).
[CrossRef]

Takada, H.

S. Kawanishi, Y. Yamabayashi, T. Takada, H. Takada, M. Saruwatwri, K. Nakagawa, “2Gb/s operation of an optical-clock-driven monolithically integrated GaAs D-flip-flip with metal-semiconductor-metal photodetectors for high-speed synchronous circuits,” IEEE Photon. Technol. Lett. 4, 160–163 (1992).
[CrossRef]

Takada, T.

S. Kawanishi, Y. Yamabayashi, T. Takada, H. Takada, M. Saruwatwri, K. Nakagawa, “2Gb/s operation of an optical-clock-driven monolithically integrated GaAs D-flip-flip with metal-semiconductor-metal photodetectors for high-speed synchronous circuits,” IEEE Photon. Technol. Lett. 4, 160–163 (1992).
[CrossRef]

Takahashi, M.

Y. Nitta, J. Ohta, M. Takahashi, S. Tai, K. Kyuma, “Optical neurochip with learning capability,” IEEE Photon. Technol. Lett. 4, 247–250 (1992).
[CrossRef]

Urisu, T.

T. Sugeta, T. Urisu, S. Sakata, Y. Mizushima, “Metal– semiconductor–metal photodetector for high speed optoelectronic circuits,” Jpn. J. Appl. Phys., Suppl. 19-1, 19, 459–464 (1980).

van Driel, H.

J. Lu, R. Surridge, G. Pakulski, H. van Driel, J. M. Xu, “Studies of high speed metal–semiconductor–metal photodetector with a GaAs/AlGaAs/GaAs heterostructure,” IEEE Trans. Electron Devices 40, 1087–1092 (1993).
[CrossRef]

Van Zeghbroeck, B. J.

B. J. Van Zeghbroeck, W. Patrick, J. Halbout, P. Vettiger, “105 GHz bandwidth metal–semiconductor–metal photodiode,” IEEE Trans. Electron Devices Lett. 9, 527–529 (1988).
[CrossRef]

Vettiger, P.

B. J. Van Zeghbroeck, W. Patrick, J. Halbout, P. Vettiger, “105 GHz bandwidth metal–semiconductor–metal photodiode,” IEEE Trans. Electron Devices Lett. 9, 527–529 (1988).
[CrossRef]

Wada, O.

M. Ito, O. Wada, “Low dark current GaAs metal– semiconductor–metal (MSM) photodiodes using WSix contacts,” IEEE J. Quantum Electron. QE-22, 1073–1077 (1986).
[CrossRef]

O. Wada, H. Hamaguchi, M. Makiuchi, T. Kumai, M. Ito, K. Nakai, T. Horimatsu, T. Sakurai, “Monolithic four-channel photodiode/amplifier receiver array integrated on a GaAs substrate,” J. Lightwave Technol. LT-4, 1694–1703 (1986).
[CrossRef]

Wang, S.

S. Wang, Fundamentals of Semiconductor Theory and Device Physics (Prentice-Hall, Englewood Cliffs, N.J., 1989), Chap. 10.6.

Wei, C. J.

C. J. Wei, H.-J. Klein, H. Beneking, “Symmetrical Mott barrier as a fast photodetector,” Electron. Lett. 17, 688–689 (1981).
[CrossRef]

Woodard, D.

K. Litvin, J. Burm, D. Woodard, W. Schaff, L. F. Eastman, “High speed optical detector for monolithic millimeter wave integrated circuits,” in IEEE MTT-S International Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, New York, 1993), Vol. 2, pp. 1063–1066.
[CrossRef]

Xu, J. M.

J. Lu, R. Surridge, G. Pakulski, H. van Driel, J. M. Xu, “Studies of high speed metal–semiconductor–metal photodetector with a GaAs/AlGaAs/GaAs heterostructure,” IEEE Trans. Electron Devices 40, 1087–1092 (1993).
[CrossRef]

Yamabayashi, Y.

S. Kawanishi, Y. Yamabayashi, T. Takada, H. Takada, M. Saruwatwri, K. Nakagawa, “2Gb/s operation of an optical-clock-driven monolithically integrated GaAs D-flip-flip with metal-semiconductor-metal photodetectors for high-speed synchronous circuits,” IEEE Photon. Technol. Lett. 4, 160–163 (1992).
[CrossRef]

Appl. Phys. Lett. (1)

S. M. Sze, G. Gibbons, “Avalanche breakdown of abrupt and linearly graded p-n junctions in Ge, Si, GaAs, and GaP,” Appl. Phys. Lett. 8, 111–113 (1966).
[CrossRef]

Electron. Lett. (1)

C. J. Wei, H.-J. Klein, H. Beneking, “Symmetrical Mott barrier as a fast photodetector,” Electron. Lett. 17, 688–689 (1981).
[CrossRef]

IEEE J. Quantum Electron. (3)

M. Ito, O. Wada, “Low dark current GaAs metal– semiconductor–metal (MSM) photodiodes using WSix contacts,” IEEE J. Quantum Electron. QE-22, 1073–1077 (1986).
[CrossRef]

J. B. D. Soole, H. Schumacher, “GaAs metal–semiconductor–metal photodetectors for long wavelength optical communications,” IEEE J. Quantum Electron. 27, 737–752 (1991).
[CrossRef]

S. Y. Chou, Y. Liu, “Nanoscale terahertz metal–semiconductor–metal photodetectors,” IEEE J. Quantum Electron. 28, 2358–2368 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Kawanishi, Y. Yamabayashi, T. Takada, H. Takada, M. Saruwatwri, K. Nakagawa, “2Gb/s operation of an optical-clock-driven monolithically integrated GaAs D-flip-flip with metal-semiconductor-metal photodetectors for high-speed synchronous circuits,” IEEE Photon. Technol. Lett. 4, 160–163 (1992).
[CrossRef]

Y. Nitta, J. Ohta, M. Takahashi, S. Tai, K. Kyuma, “Optical neurochip with learning capability,” IEEE Photon. Technol. Lett. 4, 247–250 (1992).
[CrossRef]

IEEE Trans. Electron Devices (4)

E. Sano, “A device model for metal–semiconductor–metal photodetectors and its applications to optoelectronic integrated circuit simulation,” IEEE Trans. Electron Devices, 37, 1964–1968 (1990).
[CrossRef]

E. Sano, “Two dimensional ensemble Monte Carlo calculation of pulse responses of submicrometer GaAs metal–semiconductor–metal photodetectors,” IEEE Trans. Electron Devices 38, 2075–2081 (1991).
[CrossRef]

W. Roth, H. Schumacher, J. Kluge, H. J. Geelen, H. Beneking, “The DSI diode: a fast larger-area optoelectronic detector,” IEEE Trans. Electron Devices ED-32, 1034–1036 (1985).
[CrossRef]

J. Lu, R. Surridge, G. Pakulski, H. van Driel, J. M. Xu, “Studies of high speed metal–semiconductor–metal photodetector with a GaAs/AlGaAs/GaAs heterostructure,” IEEE Trans. Electron Devices 40, 1087–1092 (1993).
[CrossRef]

IEEE Trans. Electron Devices Lett. (2)

C. W. Slayman, L. Figueroa, “Frequency and pulse response of a novel high speed interdigital surface photocon-ductor (IDPC),” IEEE Trans. Electron Devices Lett. EDL-2, 112–114 (1981).
[CrossRef]

B. J. Van Zeghbroeck, W. Patrick, J. Halbout, P. Vettiger, “105 GHz bandwidth metal–semiconductor–metal photodiode,” IEEE Trans. Electron Devices Lett. 9, 527–529 (1988).
[CrossRef]

J. Lightwave Technol. (1)

O. Wada, H. Hamaguchi, M. Makiuchi, T. Kumai, M. Ito, K. Nakai, T. Horimatsu, T. Sakurai, “Monolithic four-channel photodiode/amplifier receiver array integrated on a GaAs substrate,” J. Lightwave Technol. LT-4, 1694–1703 (1986).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Sugeta, T. Urisu, S. Sakata, Y. Mizushima, “Metal– semiconductor–metal photodetector for high speed optoelectronic circuits,” Jpn. J. Appl. Phys., Suppl. 19-1, 19, 459–464 (1980).

Solid-State Electron. (1)

S. M. Sze, D. J. Coleman, A. Loya, “Current transport in metal–semiconductor–metal (MSM) structures,” Solid-State Electron. 14, 1209–1218 (1971).
[CrossRef]

Other (3)

H. K. Henisch, Semiconductor Contacts (Oxford U. Press, London, 1988).

S. Wang, Fundamentals of Semiconductor Theory and Device Physics (Prentice-Hall, Englewood Cliffs, N.J., 1989), Chap. 10.6.

K. Litvin, J. Burm, D. Woodard, W. Schaff, L. F. Eastman, “High speed optical detector for monolithic millimeter wave integrated circuits,” in IEEE MTT-S International Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, New York, 1993), Vol. 2, pp. 1063–1066.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Energy band diagram of a MSM device under applied bias voltage.

Fig. 2
Fig. 2

Geometry of an interdigital MSM PD.

Fig. 3
Fig. 3

Current-voltage relationship of a MSM PD under different photon intensities.

Fig. 4
Fig. 4

Capacitance-voltage relationships of a MSM PD under various light intensities.

Fig. 5
Fig. 5

Comparison of experimental and theoretical results for light intensity of 0.8 mW at 840-nm wavelength.

Fig. 6
Fig. 6

Variation of photocurrent of a MSM device under various light intensities and biases; experimental and theoretical results.

Fig. 7
Fig. 7

Plot of ln(Jt/V 2) versus (1/V) showing a linear relationship at high bias (low 1/V). This is consistent with the tunneling relationship in Eq. (32).

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

J = J 0 + + J L ,
1 q J x + G = 0 ,
J 0 + = J x 1 q G W 1 ,
J L = J x 2 + q G W 2 ,
D p d 2 δ p d x 2 δ p τ p + G = 0 ,
δ p = P n 0 at x = x 1 ,
q D p d δ p d x = qGf at x = x 2 ,
q D p d δ p d x = q δ p V t .
δ p ( x ) = A exp ( x / L p ) + B exp ( x / L p ) + L p 2 D p G ,
A = ( p n 0 + G τ p ) exp ( x 2 / L p ) L p G f D p exp ( x 1 / L p ) 2 cosh ( x 2 x 1 L p ) ,
B = ( p n 0 + G τ p ) exp ( x 2 / L p ) + L p G f D p exp ( x 1 / L p ) 2 cosh ( x 2 x 1 L p ) ,
J x 1 = q D p δ p x | x = x 1 = ( q D p L p ) [ ( G τ p + P n 0 ) sinh ( x 2 x 1 L p ) L p G f D p cosh ( x 2 x 1 L p ) ] .
J = J x 1 + J x 2 q G ( W 1 W 2 ) ,
J = q G ( W 1 W 2 ) q G L p tanh ( x 2 x 1 L p ) + qGf sech ( x 2 x 1 L p ) + qGf .
J = q G ( W 1 + L p ) + q G ( W 2 + f ) for x 2 x 1 L p .
J = q G ( W 1 W 2 ) for small V .
J = q G ( W 1 W 2 ) q G ( x 2 x 1 ) + 2 qGf for x 2 x 1 L p .
J = q G ( W 1 W 2 ) + q G ( x 2 x 1 ) .
J = q G ( W 1 W 2 ) .
J = qGL ,
W 1 = [ 2 s q N d ( V d 1 + V 1 ) ] 1 / 2 ,
W 2 = [ 2 s q N d ( V d 2 V 2 ) ] 1 / 2 ,
W 1 = [ ξ ( V bi + V 1 ) ] 1 / 2 ,
W 2 = [ ξ ( V bi V 2 ) ] 1 / 2 ,
x 2 x 1 = L [ ξ ( V bi + V ) ] 1 / 2 W bi ,
J = q G { [ ξ ( V bi + V ) ] 1 / 2 W bi } q G L p tanh { L [ ξ ( V bi + V ) ] 1 / 2 W bi L p } + qGf sech ( L [ ξ ( V bi + V ) ] 1 / 2 W bi L p ) + qGf .
J rt = q G { [ ξ ( V bi + V ) ] 1 / 2 W bi } .
I = I rt { { [ ξ ( V bi + V ) ] 1 / 2 W bi } + L p tanh { L [ ξ ( V bi + V ) ] 1 / 2 W bi L p } f ( 1 + sech { L [ ξ ( V bi + V ) ] 1 / 2 W bi L p } ) { [ ξ ( V bi + V rt ) ] 1 / 2 W bi } } .
ξ = W bi 2 V bi .
ξ = ( L W bi ) 2 V rt + V bi .
W bi = L V bi V bi + V rt + V bi .
J t = p q m r h 3 q V E g E E 0 exp ( E 0 E ) ,
E 0 = π 2 2 m r E g 3 / 2 2 q h ,
J t 2217 V 2 L exp ( 1.7 × 10 9 L V ) ( A / m 2 ) .

Metrics