Abstract

The Darcie–Whalen reflection method is ambiguous and has a chart area of 72%, which is less sensitive than method H—Owen's classification—which is unambiguous and has a chart area of 100%.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. P. F. Humphreys-Owen, “Comparison of reflection methods for measuring optical constants without polarimetric analysis, and proposal for new methods based on the Brewster angle,” Proc. Phys. Soc. London77, 949–957 (1961).
    [CrossRef]
  2. T. E. Darcie, M. S. Whalen, “Determination of optical constants using pseudo-Brewster angle and normal incidence reflectance measurements,” Appl. Opt. 23, 1130–1131 (1984).
    [CrossRef] [PubMed]
  3. R. F. Miller, A. J. Taylor, L. S. Julien, “The optimum angle of incidence for determining optical constants from reflectance measurements,” J. Phys. D 3, 1957–1961 (1970).
    [CrossRef]
  4. D. G. Avery, “An improved method for measurements of optical constants by reflection,” Proc. Phys. Soc. London Sect. B65, 425–428 (1952).
    [CrossRef]
  5. I. Šimon, “Spectroscopy in infrared by reflection and its use for highly absorbing substances,” J. Opt. Am. 41, 336–345 (1951).
    [CrossRef]

1984

1970

R. F. Miller, A. J. Taylor, L. S. Julien, “The optimum angle of incidence for determining optical constants from reflectance measurements,” J. Phys. D 3, 1957–1961 (1970).
[CrossRef]

1951

I. Šimon, “Spectroscopy in infrared by reflection and its use for highly absorbing substances,” J. Opt. Am. 41, 336–345 (1951).
[CrossRef]

Avery, D. G.

D. G. Avery, “An improved method for measurements of optical constants by reflection,” Proc. Phys. Soc. London Sect. B65, 425–428 (1952).
[CrossRef]

Darcie, T. E.

Humphreys-Owen, S. P. F.

S. P. F. Humphreys-Owen, “Comparison of reflection methods for measuring optical constants without polarimetric analysis, and proposal for new methods based on the Brewster angle,” Proc. Phys. Soc. London77, 949–957 (1961).
[CrossRef]

Julien, L. S.

R. F. Miller, A. J. Taylor, L. S. Julien, “The optimum angle of incidence for determining optical constants from reflectance measurements,” J. Phys. D 3, 1957–1961 (1970).
[CrossRef]

Miller, R. F.

R. F. Miller, A. J. Taylor, L. S. Julien, “The optimum angle of incidence for determining optical constants from reflectance measurements,” J. Phys. D 3, 1957–1961 (1970).
[CrossRef]

Šimon, I.

I. Šimon, “Spectroscopy in infrared by reflection and its use for highly absorbing substances,” J. Opt. Am. 41, 336–345 (1951).
[CrossRef]

Taylor, A. J.

R. F. Miller, A. J. Taylor, L. S. Julien, “The optimum angle of incidence for determining optical constants from reflectance measurements,” J. Phys. D 3, 1957–1961 (1970).
[CrossRef]

Whalen, M. S.

Appl. Opt.

J. Phys. D

R. F. Miller, A. J. Taylor, L. S. Julien, “The optimum angle of incidence for determining optical constants from reflectance measurements,” J. Phys. D 3, 1957–1961 (1970).
[CrossRef]

J. Opt. Am.

I. Šimon, “Spectroscopy in infrared by reflection and its use for highly absorbing substances,” J. Opt. Am. 41, 336–345 (1951).
[CrossRef]

Other

S. P. F. Humphreys-Owen, “Comparison of reflection methods for measuring optical constants without polarimetric analysis, and proposal for new methods based on the Brewster angle,” Proc. Phys. Soc. London77, 949–957 (1961).
[CrossRef]

D. G. Avery, “An improved method for measurements of optical constants by reflection,” Proc. Phys. Soc. London Sect. B65, 425–428 (1952).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Chart of the Darcie–Whalen method. (b) A zoom of the chart of the Darcie–Whalen method; at the bottom one can see the self-overlap region.

Fig. 2
Fig. 2

Chart of method H, the Owen classification.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

J = β n R 0 k β k R 0 n ,
( 1 k J ) k 0 = 4 n 4 + 3 n 2 2 n 3 ( n 2 + 1 ) 3 .
n 2 < ( 17 3 ) / 2 .
{ ( R p / R s ) β ( n , k ) = ( R p / R s ) β , β ( n , k ) = β .
p 1 , 2 2 = sin 2 β tan 2 β 2 ( 1 Q 2 cos 2 β ) × [ 2 + tan 2 β 2 Q 2 cos ( 2 β ) ± tan 2 β Δ ] ,
q 1 , 2 = p 1 , 2 2 2 sin 2 β ( 1 + 2 cos 2 β p 1 , 2 2 cot 4 β ) ,
Δ = 1 + 8 Q 2 cos 2 β ,
p = n 2 + k 2 ,
q = n 2 k 2 ,
Q = 2 ( R p / R s ) β 1 + ( R p / R s ) β .
μ = p 2 cot 2 β sin 2 β ,
μ = [ ( q sin 2 β ) 2 + 4 n 2 k 2 ] 1 / 2 .
1 + 2 Q 2 sin 2 β ± Δ 0 .
Q cos β 1 ,
p 1 2 q 1 2 = p 1 2 X [ 2 sin 2 β + ( 4 cos 2 β 1 ) X 2 cos 2 β X 2 ] ,
X = sin 2 β 1 Q 2 cos 2 β X + X + ,
X + = 4 cos 2 β 1 + Δ 4 cos 2 β

Metrics