Abstract

A scanning coherent lidar (laser radar) for detecting and mapping isolated submicrometer particles in hostile or inaccessible regions such as plasma chambers, ovens, tanks, and pipes is described. The sensor uses a noise-canceled diode laser homodyne interferometer of novel design that is insensitive to misalignment, runs at the quantum limit, and requires just one access window. At a false-count rate of 10−5 Hz, the sensor needs 50 photons to detect a particle. A combination of techniques makes the system immune to stray light or laser light scattered from the chamber walls, though these other light sources may be 106 times more intense than the desired signal.

© 1995 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical particle sizing for in situ measurements Part 1

Don Holve and Sidney A. Self
Appl. Opt. 18(10) 1632-1645 (1979)

Coherent Fourier scatterometry for detection of nanometer-sized particles on a planar substrate surface

S. Roy, A. C. Assafrão, S. F. Pereira, and H. P. Urbach
Opt. Express 22(11) 13250-13262 (2014)

Ultrawideband coherent noise lidar range-Doppler imaging and signal processing by use of spatial-spectral holography in inhomogeneously broadened absorbers

Youzhi Li, Alan Hoskins, Friso Schlottau, Kelvin H. Wagner, Carl Embry, and William Randall Babbitt
Appl. Opt. 45(25) 6409-6420 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription