Abstract

The Jones matrix is obtained for a film with a photoinduced anisotopy. The anisotropy of the film is considered to be caused by photoinduced anisotropic grains. On the basis of the Jones matrix we study Weigert's hologram of linearly polarized plane waves.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. D. Ebralidze, N. A. Ebralidze, “Hologram recorded by means of film anistropy photoinduction, Appl. Opt. 31, 4720–4724 (1992).
    [CrossRef] [PubMed]
  2. I. Schneider, “Information storage using the anistropy of color centers in alkali halide crystals,” Appl. Opt. 6, 2197–2198 (1967).
    [CrossRef] [PubMed]
  3. F. Lanzl, U. Roder, X. Weidelich, “Hologram recording by aligning of anistropic color centers,” Appl. Phys. Lett. 18, 56–58 (1971).
    [CrossRef]
  4. Sh. D. Kakichashvili, “On the polarization recording of holograms,” Opt. Spektrosk. 33, 324–327 (1972).
  5. M. Attia, J. M. C. Jonathan, “Anistropic gratings recorded from two circularly polarized coherent waves,” Opt. Commun. 47, 85–90, (1983).
    [CrossRef]
  6. T. Kondo, “Uber den photoanisotropen Effekt (Weigerteffekt) an Farbstoffen I,” Z. Wiss. Photogr. Photophys. Photochem. 31, 153–167 (1932).
  7. J. M. Jonathan, M. May, “Interferograms generated by anistropic photographic recording of two partially coherent vibrations perpendicularly polarized,” Appl. Opt. 19, 624–630 (1980).
    [CrossRef] [PubMed]
  8. S. Calixto, R. A. Lessard, “Real-time polarizing optical image processing with dyed plastic,” Appl. Opt. 24, 773–776 (1985).
    [CrossRef] [PubMed]
  9. T. D. Ebralidze, A. N. Mumladze, “On the diffraction grating generated by reversible orientational photoanisotropy,” Opt. Spektrosk. 64, 155–158 (1988).
  10. Sh. D. Kakichshvili, T. N. Kvinikhidze, “Polarizational hologram recording with reference wave of an arbitrary polarization,” Kvan. Electron. (Moscow) 2, 1449–1453 (1975).
  11. T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
    [CrossRef] [PubMed]
  12. T. D. Ebralidze, A. N. Mumladze, “Light-induced anisotropy in azo-dye-colored materials,” Appl. Opt. 29, 446–447 (1990).
    [CrossRef] [PubMed]
  13. T. Todorov, N. Tomova, L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
    [CrossRef]
  14. R. C. Jones, “New calculus for the treatment of optical systems. VIII. Electromagnetic theory” J. Opt. Soc. Am. 46, 126–131 (1956).
    [CrossRef]
  15. T. D. Ebralidze, A. N. Mumladze, T. V. Kalandarichvili, “The reversible Weigert effect,” Opt. Spektrosk. 58, 1074–1076 (1985).
  16. T. D. Ebralidze, “On formation of given distribution of a light field,” Zh. Tekh. Fiz. 52, 1865–1867 (1982).
  17. T. D. Ebralidze, “On a model of aniosotropic diffraction grating,” Opt. Spectrosk. 53, 944–946 (1982).
  18. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), pp. 49–52.
  19. T. D. Ebralidze “On an anisotropic holographic diffraction grating,” Opt. Spectrosk. 60, 1269–1272 (1986).

1992 (1)

1990 (1)

1988 (1)

T. D. Ebralidze, A. N. Mumladze, “On the diffraction grating generated by reversible orientational photoanisotropy,” Opt. Spektrosk. 64, 155–158 (1988).

1986 (1)

T. D. Ebralidze “On an anisotropic holographic diffraction grating,” Opt. Spectrosk. 60, 1269–1272 (1986).

1985 (2)

T. D. Ebralidze, A. N. Mumladze, T. V. Kalandarichvili, “The reversible Weigert effect,” Opt. Spektrosk. 58, 1074–1076 (1985).

S. Calixto, R. A. Lessard, “Real-time polarizing optical image processing with dyed plastic,” Appl. Opt. 24, 773–776 (1985).
[CrossRef] [PubMed]

1984 (1)

1983 (2)

T. Todorov, N. Tomova, L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[CrossRef]

M. Attia, J. M. C. Jonathan, “Anistropic gratings recorded from two circularly polarized coherent waves,” Opt. Commun. 47, 85–90, (1983).
[CrossRef]

1982 (2)

T. D. Ebralidze, “On formation of given distribution of a light field,” Zh. Tekh. Fiz. 52, 1865–1867 (1982).

T. D. Ebralidze, “On a model of aniosotropic diffraction grating,” Opt. Spectrosk. 53, 944–946 (1982).

1980 (1)

1975 (1)

Sh. D. Kakichshvili, T. N. Kvinikhidze, “Polarizational hologram recording with reference wave of an arbitrary polarization,” Kvan. Electron. (Moscow) 2, 1449–1453 (1975).

1972 (1)

Sh. D. Kakichashvili, “On the polarization recording of holograms,” Opt. Spektrosk. 33, 324–327 (1972).

1971 (1)

F. Lanzl, U. Roder, X. Weidelich, “Hologram recording by aligning of anistropic color centers,” Appl. Phys. Lett. 18, 56–58 (1971).
[CrossRef]

1967 (1)

1956 (1)

1932 (1)

T. Kondo, “Uber den photoanisotropen Effekt (Weigerteffekt) an Farbstoffen I,” Z. Wiss. Photogr. Photophys. Photochem. 31, 153–167 (1932).

Attia, M.

M. Attia, J. M. C. Jonathan, “Anistropic gratings recorded from two circularly polarized coherent waves,” Opt. Commun. 47, 85–90, (1983).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), pp. 49–52.

Calixto, S.

Ebralidze, N. A.

Ebralidze, T. D.

T. D. Ebralidze, N. A. Ebralidze, “Hologram recorded by means of film anistropy photoinduction, Appl. Opt. 31, 4720–4724 (1992).
[CrossRef] [PubMed]

T. D. Ebralidze, A. N. Mumladze, “Light-induced anisotropy in azo-dye-colored materials,” Appl. Opt. 29, 446–447 (1990).
[CrossRef] [PubMed]

T. D. Ebralidze, A. N. Mumladze, “On the diffraction grating generated by reversible orientational photoanisotropy,” Opt. Spektrosk. 64, 155–158 (1988).

T. D. Ebralidze “On an anisotropic holographic diffraction grating,” Opt. Spectrosk. 60, 1269–1272 (1986).

T. D. Ebralidze, A. N. Mumladze, T. V. Kalandarichvili, “The reversible Weigert effect,” Opt. Spektrosk. 58, 1074–1076 (1985).

T. D. Ebralidze, “On formation of given distribution of a light field,” Zh. Tekh. Fiz. 52, 1865–1867 (1982).

T. D. Ebralidze, “On a model of aniosotropic diffraction grating,” Opt. Spectrosk. 53, 944–946 (1982).

Jonathan, J. M.

Jonathan, J. M. C.

M. Attia, J. M. C. Jonathan, “Anistropic gratings recorded from two circularly polarized coherent waves,” Opt. Commun. 47, 85–90, (1983).
[CrossRef]

Jones, R. C.

Kakichashvili, Sh. D.

Sh. D. Kakichashvili, “On the polarization recording of holograms,” Opt. Spektrosk. 33, 324–327 (1972).

Kakichshvili, Sh. D.

Sh. D. Kakichshvili, T. N. Kvinikhidze, “Polarizational hologram recording with reference wave of an arbitrary polarization,” Kvan. Electron. (Moscow) 2, 1449–1453 (1975).

Kalandarichvili, T. V.

T. D. Ebralidze, A. N. Mumladze, T. V. Kalandarichvili, “The reversible Weigert effect,” Opt. Spektrosk. 58, 1074–1076 (1985).

Kondo, T.

T. Kondo, “Uber den photoanisotropen Effekt (Weigerteffekt) an Farbstoffen I,” Z. Wiss. Photogr. Photophys. Photochem. 31, 153–167 (1932).

Kvinikhidze, T. N.

Sh. D. Kakichshvili, T. N. Kvinikhidze, “Polarizational hologram recording with reference wave of an arbitrary polarization,” Kvan. Electron. (Moscow) 2, 1449–1453 (1975).

Lanzl, F.

F. Lanzl, U. Roder, X. Weidelich, “Hologram recording by aligning of anistropic color centers,” Appl. Phys. Lett. 18, 56–58 (1971).
[CrossRef]

Lessard, R. A.

May, M.

Mumladze, A. N.

T. D. Ebralidze, A. N. Mumladze, “Light-induced anisotropy in azo-dye-colored materials,” Appl. Opt. 29, 446–447 (1990).
[CrossRef] [PubMed]

T. D. Ebralidze, A. N. Mumladze, “On the diffraction grating generated by reversible orientational photoanisotropy,” Opt. Spektrosk. 64, 155–158 (1988).

T. D. Ebralidze, A. N. Mumladze, T. V. Kalandarichvili, “The reversible Weigert effect,” Opt. Spektrosk. 58, 1074–1076 (1985).

Nikolova, L.

T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
[CrossRef] [PubMed]

T. Todorov, N. Tomova, L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[CrossRef]

Roder, U.

F. Lanzl, U. Roder, X. Weidelich, “Hologram recording by aligning of anistropic color centers,” Appl. Phys. Lett. 18, 56–58 (1971).
[CrossRef]

Schneider, I.

Todorov, T.

T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
[CrossRef] [PubMed]

T. Todorov, N. Tomova, L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[CrossRef]

Tomova, N.

T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
[CrossRef] [PubMed]

T. Todorov, N. Tomova, L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[CrossRef]

Weidelich, X.

F. Lanzl, U. Roder, X. Weidelich, “Hologram recording by aligning of anistropic color centers,” Appl. Phys. Lett. 18, 56–58 (1971).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), pp. 49–52.

Appl. Opt. (6)

Appl. Phys. Lett. (1)

F. Lanzl, U. Roder, X. Weidelich, “Hologram recording by aligning of anistropic color centers,” Appl. Phys. Lett. 18, 56–58 (1971).
[CrossRef]

J. Opt. Soc. Am. (1)

Kvan. Electron. (Moscow) (1)

Sh. D. Kakichshvili, T. N. Kvinikhidze, “Polarizational hologram recording with reference wave of an arbitrary polarization,” Kvan. Electron. (Moscow) 2, 1449–1453 (1975).

Opt. Commun. (2)

T. Todorov, N. Tomova, L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[CrossRef]

M. Attia, J. M. C. Jonathan, “Anistropic gratings recorded from two circularly polarized coherent waves,” Opt. Commun. 47, 85–90, (1983).
[CrossRef]

Opt. Spectrosk. (2)

T. D. Ebralidze “On an anisotropic holographic diffraction grating,” Opt. Spectrosk. 60, 1269–1272 (1986).

T. D. Ebralidze, “On a model of aniosotropic diffraction grating,” Opt. Spectrosk. 53, 944–946 (1982).

Opt. Spektrosk. (3)

T. D. Ebralidze, A. N. Mumladze, T. V. Kalandarichvili, “The reversible Weigert effect,” Opt. Spektrosk. 58, 1074–1076 (1985).

T. D. Ebralidze, A. N. Mumladze, “On the diffraction grating generated by reversible orientational photoanisotropy,” Opt. Spektrosk. 64, 155–158 (1988).

Sh. D. Kakichashvili, “On the polarization recording of holograms,” Opt. Spektrosk. 33, 324–327 (1972).

Z. Wiss. Photogr. Photophys. Photochem. (1)

T. Kondo, “Uber den photoanisotropen Effekt (Weigerteffekt) an Farbstoffen I,” Z. Wiss. Photogr. Photophys. Photochem. 31, 153–167 (1932).

Zh. Tekh. Fiz. (1)

T. D. Ebralidze, “On formation of given distribution of a light field,” Zh. Tekh. Fiz. 52, 1865–1867 (1982).

Other (1)

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), pp. 49–52.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Diagram of polarization distribution in the interferogram of linearly polarized plane waves. Y is the coordinate of the point of observation, and α is the angle between the planes of polarization of the interfering waves. ψ1 and ψ2 are the angles between the directions of the polarization vector of the summation wave and the axis X. The light ellipses are conditionally designated by rectangles.

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

E i A 2 sin ( π / λ Δ n d ) exp ( i π / λ Δ n d ) sin 2 ψ ,
M 1 A 2 exp ( i δ / 2 ) = [ cos δ / 2 + i sin δ / 2 cos 2 ψ i sin δ / 2 sin 2 ψ i sin δ / 2 sin 2 ψ cos δ / 2 i sin δ / 2 cos 2 ψ ] ,
M a 2 exp ( i δ / 2 ) [ cos δ / 2 + i sin δ / 2 cos 2 ψ i sin δ / 2 sin 2 ψ i sin δ / 2 sin 2 ψ cos δ / 2 i sin δ / 2 cos 2 ψ ] , + b 2 exp ( i δ / 2 ) [ cos δ / 2 i sin δ / 2 cos 2 ψ i sin δ / 2 cos 2 ψ i sin δ / 2 cos 2 ψ cos δ / 2 + i sin δ / 2 cos 2 ψ ] ,
M exp ( i δ / 2 ) [ ( a 2 + b 2 ) cos δ / 2 + i ( a 2 b 2 ) sin δ / 2 cos 2 ψ i ( a 2 b 2 ) sin δ / 2 sin 2 ψ i ( a 2 b 2 ) sin δ / 2 sin 2 ψ ( a 2 + b 2 ) cos δ / 2 i ( a 2 b 2 ) sin δ / 2 cos 2 ψ ] .
E x = a 0 cos α cos ω t + a 1 cos ( ω t k y sin ϑ ) , E y = a 0 sin α cos ω t ,
E x = { [ a 0 cos α + a 1 cos ( k y sin ϑ ) ] 2 + a 1 2 sin 2 ( k y sin ϑ ) } 1 / 2 cos ( ω t + δ 1 ) , E y = a 0 sin α cos ω t ,
sin δ 1 = a 1 sin ( k y sin ϑ ) { [ a 0 cos α + a 1 cos ( k y sin ϑ ) ] 2 + a 1 2 sin 2 ( k y sin ϑ ) } 1 / 2 , cos δ 1 = α 0 cos α + a 1 cos ( k y sin ϑ ) { [ a 0 cos α + a 1 cos ( k y sin ϑ ) ] 2 + a 1 2 sin 2 ( k y sin ϑ ) } 1 / 2 .
t g 2 ψ = 2 a 0 sin α [ a 0 cos α + a 1 cos ( k y sin ϑ ) ] a 0 2 cos 2 α + a 1 2 + 2 a 0 a 1 cos α cos ( k y sin ϑ ) .
t g 2 ψ = t g α cos α + cos ( k y sin ϑ ) cos α + cos ( k y sin ϑ ) .
2 ψ 1 = α , 2 ψ 2 = α + π ,
( π α ) < k y sin ϑ 2 m π < ( π α ) ,
( π α ) < k y sin ϑ 2 m π < ( π + α )
a 2 + b 2 = a 0 2 + a 1 2 + 2 a 0 a 1 cos α cos ( k y sin ϑ ) .
a 2 + b 2 = 2 a 0 2 [ 1 + cos α cos ( k y sin ϑ ) ] .
a 2 b 2 = [ ( a 2 + b 2 ) 2 ( 2 a b ) 2 ] 1 / 2 .
a b = a 0 sin α { [ a 0 cos α + a 1 cos ( k y sin ϑ ) ] 2 + a 1 2 sin 2 ( k y sin ϑ ) } 1 / 2 sin δ 1 .
a 2 b 2 = 2 a 0 2 | cos α + cos ( k y sin ϑ ) | .
a 2 b 2 = 2 a 0 2 [ cos α + cos ( k y sin ϑ ) ]
a 2 b 2 = 2 a 0 2 [ cos α + cos ( k y sin ϑ ) ]
D 1 exp ( i δ / 2 ) × [ ( a 2 + b 2 ) cos δ / 2 + i ( a 2 b 2 ) sin δ / 2 cos 2 ψ 1 i ( a 2 b 2 ) sin δ / 2 sin 2 ψ 1 i ( a 2 b 2 ) sin δ / 2 sin 2 ψ 1 ( a 2 + b 2 ) cos δ / 2 i ( a 2 b 2 ) sin δ / 2 cos 2 ψ 1 ] X 1 ( y ) ,
D 2 exp ( i δ / 2 ) × [ ( a 2 + b 2 ) cos δ / 2 + i ( a 2 b 2 ) sin δ / 2 cos 2 ψ 2 i ( a 2 b 2 ) sin δ / 2 sin 2 ψ 2 i ( a 2 b 2 ) sin δ / 2 sin 2 / ψ 2 ( a 2 + b 2 ) cos δ / 2 i ( a 2 b 2 ) sin δ / 2 cos 2 ψ 2 ] X 2 ( y ) ,
X 1 ( y ) = { 1 if ( π α ) < k y sin ϑ 2 m π < ( π α ) 0 otherwise ( π α ) < k y sin ϑ 2 m π < ( π + α ) , X 2 ( y ) = 1 X 1 ( y ) .
D 1 D 0 X 1 ( y ) , D 2 = D 0 X 2 ( y ) ,
D 0 2 a 0 2 exp ( i δ / 2 ) × [ { 1 + cos α cos ( k y sin ϑ ) } cos δ / 2 i { cos α + cos ( k y sin ϑ ) } sin δ / 2 sin α + i { cos α + cos ( k y sin ϑ ) } sin δ / 2 cos α i { cos α + cos ( k y sin ϑ ) } sin δ / 2 sin α i { cos α + cos ( k y sin ϑ ) } sin δ / 2 cos α { 1 + cos α cos ( k y sin ϑ ) } cos δ / 2 ] .
D = D 1 + D 2 = D 0 .
[ cos β sin β ] .
D [ cos β sin β ] = 2 a 0 2 exp ( i δ / 2 ) × { [ cos δ / 2 cos β + i cos α sin δ / 2 cos ( α β ) cos δ / 2 sin β + i cos α sin δ / 2 cos ( α β ) ] + [ cos α cos δ / 2 cos β + i sin δ / 2 cos ( α β ) cos α cos δ / 2 sin β + i sin δ / 2 sin ( α β ) ] × cos ( k y sin ϑ ) } .
M [ cos α cos δ / 2 cos β + i sin δ / 2 cos ( α β ) cos α cos δ / 2 sin β + i sin δ / 2 sin ( α β ) ] .
I ( α ) cos 2 α cos 2 δ / 2 + sin 2 δ / 2 .
sin δ / 2 = [ I ( 90 ° ) / I ( 0 ° ) ] 1 / 2 .
M 1 [ cos 2 α cos δ / 2 + i sin δ / 2 cos α sin α cos δ / 2 ] .
i sin δ / 2 [ 1 0 ] .

Metrics