Abstract

A method for designing and recording visor displays based on planar holographic optics is presented. This method can deal with the problem of recording-readout wavelength shift. The display system is composed of two holographic optical elements that are recorded on the same substrate. One element collimates the waves from each data point in the display into a plane wave that is trapped inside the substrate by total internal reflection. The other diffracts the plane waves into the eye of an observer. Because the chromatic dispersion of the first element can be corrected by the dispersion of the second, this configuration is relatively insensitive to source wavelength shifts. The method is illustrated by the design, recording, and testing of a compact holographic doublet visor display. The recording was at a wavelength of 458 nm, and readout was at 633 nm. The results indicate that diffraction-limited performance and relatively low chromatic dispersion over a wide field of view can be obtained.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Fairchild, J. R. Fienup, “Computer-originated aspheric holographic optical element,” Opt. Eng. 21, 133–140 (1982).
  2. K. A. Winick, J. R. Fienup, “Optimum holographic elements with nonspherical wave front,” J. Opt. Soc. Am. 73, 208–217 (1983).
    [CrossRef]
  3. J. Kedmi, A. A. Friesem, “Optimal holographic Fourier-transform lens,” Appl. Opt. 23, 4015–4019 (1984).
    [CrossRef] [PubMed]
  4. Y. Amitai, A. A. Friesem, “Design of holographic optical elements by using recursive technique,” J. Opt. Soc. Am. A 5, 702–712 (1988).
    [CrossRef]
  5. H. P. Herzig, “Holographic optical elements for semiconductor lasers,” Opt. Commun. 58, 144–148 (1986).
    [CrossRef]
  6. H. Chen, R. R. Hershey, E. Leith, “Design of a holographic lens for the infrared,” Appl. Opt. 26, 1983–1988 (1989).
    [CrossRef]
  7. Y. Amitai, A. A. Friesem, V. Weiss, “Holographic elements with high efficiency and low aberrations for helmet displays,” Appl. Opt. 28, 3405–3416 (1989).
    [CrossRef] [PubMed]
  8. R. K. Kostuk, Y. T. Huang, D. Hetherington, M. Kato, “Reducing alignment and chromatic sensitivity of holographic optical interconnects with substrate-mode holograms,” Appl. Opt. 28, 4939–4944 (1991).
    [CrossRef]
  9. J. Jahns, S. Walker, “Imaging with planar optical systems,” Opt. Commun. 76, 313–317 (1989).
    [CrossRef]
  10. Y. Amitai, J. W. Goodman, “Design of substrate-mode holographic interconnects with different recording and readout wavelengths,” Appl. Opt. 30, 2376–2381 (1991).
    [CrossRef] [PubMed]
  11. E. Hasman, A. A. Friesem, “Analytic optimization of holographic optical elements,” J. Opt. Soc. Am. A 6, 62–69 (1989).
    [CrossRef]

1991 (2)

1989 (4)

1988 (1)

1986 (1)

H. P. Herzig, “Holographic optical elements for semiconductor lasers,” Opt. Commun. 58, 144–148 (1986).
[CrossRef]

1984 (1)

1983 (1)

1982 (1)

R. C. Fairchild, J. R. Fienup, “Computer-originated aspheric holographic optical element,” Opt. Eng. 21, 133–140 (1982).

Amitai, Y.

Chen, H.

Fairchild, R. C.

R. C. Fairchild, J. R. Fienup, “Computer-originated aspheric holographic optical element,” Opt. Eng. 21, 133–140 (1982).

Fienup, J. R.

K. A. Winick, J. R. Fienup, “Optimum holographic elements with nonspherical wave front,” J. Opt. Soc. Am. 73, 208–217 (1983).
[CrossRef]

R. C. Fairchild, J. R. Fienup, “Computer-originated aspheric holographic optical element,” Opt. Eng. 21, 133–140 (1982).

Friesem, A. A.

Goodman, J. W.

Hasman, E.

Hershey, R. R.

Herzig, H. P.

H. P. Herzig, “Holographic optical elements for semiconductor lasers,” Opt. Commun. 58, 144–148 (1986).
[CrossRef]

Hetherington, D.

Huang, Y. T.

Jahns, J.

J. Jahns, S. Walker, “Imaging with planar optical systems,” Opt. Commun. 76, 313–317 (1989).
[CrossRef]

Kato, M.

Kedmi, J.

Kostuk, R. K.

Leith, E.

Walker, S.

J. Jahns, S. Walker, “Imaging with planar optical systems,” Opt. Commun. 76, 313–317 (1989).
[CrossRef]

Weiss, V.

Winick, K. A.

Appl. Opt. (5)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Opt. Commun. (2)

H. P. Herzig, “Holographic optical elements for semiconductor lasers,” Opt. Commun. 58, 144–148 (1986).
[CrossRef]

J. Jahns, S. Walker, “Imaging with planar optical systems,” Opt. Commun. 76, 313–317 (1989).
[CrossRef]

Opt. Eng. (1)

R. C. Fairchild, J. R. Fienup, “Computer-originated aspheric holographic optical element,” Opt. Eng. 21, 133–140 (1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Readout geometry of the planar-optics holographic doublet visor display.

Fig. 2
Fig. 2

Unfolded configuration of the holographic doublet.

Fig. 3
Fig. 3

Calculated spot sizes for the corrected HDVD ℋ1 (solid curve) and the noncorrected HDVD ℋ2 (dashed curve) covering a FOV of ±6°.

Fig. 4
Fig. 4

Experimental spot sizes in the focal plane for the corrected HDVD ℋ1.

Fig. 5
Fig. 5

Chromatic variation in the lateral focal position.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

ν sin β i d ( x ) ν sin β ¯ i d ( x ) 1 ,
μ ( 1 R 0 1 R r ) = 1 R d , μ ( sin β r sin β o ) = sin β c ,
μ ( 1 R o o + 1 R c o 1 R o r 1 R c r ) = 1 R d , μ ( sin β r o sin β r r ) = sin β c .
sin β q p ( x ) x R q p 1 2 x 3 ( R q p ) 3 ,
R q p ( x ) = R q p cos β q p ( x ) R q p 1 1 / 2 sin 2 β q p ( x ) R q p 1 1 / 2 ( x / R q p ) 2 + 1 / 2 ( x / R q p ) 4 ,
sin β r p ( x ) = sin β r p .
sin β ¯ c ( x ) = sin ( β ¯ c + Δ β ¯ c ) = sin β ¯ c + Δ β ¯ c cos β c .
sin ( β ¯ c + Δ β ¯ c ) = sin β ¯ c + Δ β c g ν = sin β ¯ c + ξ ( x ) ν R eye .
Δ β ¯ c = ξ ( x ) ν R eye cos β ¯ c .
ξ ( x ) = x R H Δ β ¯ c cos β ¯ c = x R H ξ ( x ) ν R eye cos 2 β ¯ c ,
ξ ( x ) ν R eye = x ν R eye + R H / ( cos 2 β ¯ c ) ,
sin β ¯ c ( x ) = sin β ¯ c + x ν R eye + R H / ( cos 2 β ¯ c ) .
sin β i ( x ) = ν sin β ¯ c ( x ) + μ [ sin β c o + sin β o o ( x ) sin β r o ( x ) sin β c r ( x ) sin β o r ( x ) + sin β r r ( x ) ] = sin β c + x R eye + R H / ( ν cos 2 β ¯ c ) + μ [ x ( 1 R c o + 1 R o o 1 R c r 1 R o r ) sin β o r + sin β r r ] = x R eye + R H / ( ν cos 2 β ¯ c ) x R d ,
sin β i ( x ) 0 .
S ( x ) = 1 R i 3 ( x ) + μ p = o , r q = c , o p [ 1 R q p ( x ) ] 3 = 1 R d 3 + μ [ p = o , r q = c , o p ( 1 R q p ) 3 3 2 x 2 p = o , r q = c , o p ( 1 R q p ) 5 ] , C ( x ) = μ p = o , r q = c , o p sin β q p ( x ) [ R q p ( x ) ] 2 = μ [ x p = o , r q = c , o p ( 1 R q p ) 3 3 2 x 3 p = o , r q = c , o p ( 1 R q p ) 5 ] , A ( x ) = μ p = o , r q = c , o p sin 2 β q p ( x ) R q p ( x ) = μ [ x 2 p = o , r q = c , o p ( 1 R q p ) 3 3 2 x 4 p = o , r q = c , o p ( 1 R q p ) 5 ] , F ( x ) = 1 R i ( x ) + μ p = o , r q = c , o p 1 R q p ( x ) = μ [ x 2 2 p = o , r q = c , o p ( 1 R q p ) 3 + x 4 2 p = o , r q = c , o p ( 1 R q p ) 5 ] ,
p = o , r q = c , o p ( 1 R q p ) 3 = p = o , r q = c , o p ( 1 R q p ) 5 = 0 .
R d = 87.8 mm , R H = 32.3 mm , d eye = 4 mm , β ¯ i g = β ¯ c = 48 ° , R eye = 40 mm , D h = 24 mm , T h = 3 mm , ν = 1.51 , λ o = 457.9 mm , λ c = 632.8 nm μ = 1.38 ,
ν sin β ¯ c min ( x ) = ν sin β ¯ c sin ( 6 ° ) sin β ¯ c min ( x ) = 42.37 ° .
1.5 > sin β ¯ c min ( x ) = 1.01 > 1 .
R o o = 170.26 mm , β r o = 78 ° , R c o = 1905 mm , R o r = 126.7 mm , β r r = 9.5 ° , R c r = 200 mm .

Metrics