Abstract

We demonstrate a nonscanning confocal ranging system based on spatially incoherent interferometry. Such a system has significant advantages over the conventional confocal imaging system and other interferometric systems. We develop the theory in terms of coherence cells and demonstrate the equivalence of our method to the conventional confocal methods. Experimental results are also provided.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).
  2. M. Petran, M. Hadravsky, M. D. Egger, R. Galambos, “Tandem-scanning reflected-light microscope,” J. Opt. Soc. Am. 58, 661–664 (1968).
    [CrossRef]
  3. G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
    [CrossRef]
  4. M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).
  5. B. S. Lee, T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29, 3784–3788 (1990).
    [CrossRef] [PubMed]
  6. G. S. Kino, S. S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990).
    [CrossRef] [PubMed]
  7. T. Dresel, G. Häusler, H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–924 (1992).
    [CrossRef] [PubMed]
  8. P. C. Sun, E. N. Leith, “Broad-source image plane holography as a confocal imaging process,” Appl. Opt. 33, 597–602 (1994).
    [CrossRef] [PubMed]
  9. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 5.
  10. E. N. Leith, C.-P. Kuei, “Interferometric method for imaging through inhomogeneities,” Opt. Lett. 12, 149–151 (1987).
    [CrossRef] [PubMed]
  11. E. N. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, P. C. Sun, “Imaging through scattering media using spatial incoherence techniques,” Opt. Lett. 16, 1820–1822 (1991).
    [CrossRef] [PubMed]
  12. E. G. Paek, “Microlaser arrays for optical information processing,” Opt. Photon. News 4(5), 16–23 (1993).
    [CrossRef]
  13. E. Arons, D. Dilworth, M. Shih, P. C. Sun, “Use of Fourier synthesis holography to image through inhomogeneities,” Opt. Lett. 18, 1852–1854 (1993).
    [CrossRef] [PubMed]

1994 (1)

1993 (2)

1992 (1)

1991 (1)

1990 (2)

1988 (1)

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

1987 (1)

1968 (1)

Arons, E.

Chen, C.

Chen, H.

Chen, Y.

Chim, S. S. C.

Cohen, F.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).

Corle, T. R.

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Davidson, M.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).

Dilworth, D.

Dresel, T.

Egger, M. D.

Galambos, R.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 5.

Hadravsky, M.

Häusler, G.

Kaufman, K.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).

Kino, G. S.

G. S. Kino, S. S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990).
[CrossRef] [PubMed]

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Kuei, C.-P.

Lee, B. S.

Leith, E. N.

Lopez, J.

Mazor, I.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).

Paek, E. G.

E. G. Paek, “Microlaser arrays for optical information processing,” Opt. Photon. News 4(5), 16–23 (1993).
[CrossRef]

Petran, M.

Sheppard, C. J. R.

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).

Shih, M.

Strand, T. C.

Sun, P. C.

Venzke, H.

Wilson, T.

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).

Xiao, G. Q.

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (3)

Opt. Photon. News (1)

E. G. Paek, “Microlaser arrays for optical information processing,” Opt. Photon. News 4(5), 16–23 (1993).
[CrossRef]

Other (3)

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Confocal scanning imaging system.

Fig. 2
Fig. 2

Coherence probe microscope.

Fig. 3
Fig. 3

Confocal ranging system.

Fig. 4
Fig. 4

Propagation of the incoherent optical field through (a) an ordinary imaging system and (b) an imaging system with a phase compensation mask in the object plane.

Fig. 5
Fig. 5

Illustration of the property of the depth discrimination of the optical ranging system.

Fig. 6
Fig. 6

Three different imaging arrangements in which the images were focused on (a) the top and (b) the bottom surfaces of the object, and on (c) an inclined surface intersecting with the object. Each surface is indicated by the shadow plane in each figure.

Fig. 7
Fig. 7

Image from the object beam of the confocal ranging system.

Fig. 8
Fig. 8

Images reconstructed from the confocal ranging system with imaging arrangements one to one, corresponding with that of Fig. 7.

Fig. 9
Fig. 9

Same images as those in Fig. 8 but with a binary threshold setting.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

U II ( u ) = - U I ( ξ ) K ( u ; ξ ) d ξ ,
K ( u ; ξ ) = C exp ( j π λ z i u 2 ) exp ( j π λ z 0 ξ 2 ) × p ( x ) exp { - j 2 π λ z i [ ( u + z i z o ξ ) x ] } d x ,
U ( u ; ξ s ) = - δ ( ξ - ξ s ) K ( u ; ξ ) d ξ = K ( u ; ξ s ) .
U ( ξ ; ξ s ) = - t ( u ) K ( u ; ξ s ) K ( u ; ξ ) d u .
K ( u ; ξ ) = C exp [ j π λ z o ( 1 + z i z o ) ξ 2 ] × p ( x ) exp { - j 2 π λ z i [ ( u + z i z o ξ ) x ] } d x .
U ( ξ ; ξ s ) = - t ( u ) P ( u λ z i + ξ s λ z o ) P ( u λ z i + ξ λ z o ) d u ,
U o ( η ; ξ s ) = - t ( u ) P ( u λ z i + ξ s λ z o ) P ( u λ z i + η λ z o ) d u ,
U r ( η ; ξ s ) = δ ( η - ξ s ) ,
I ( η ) = U o ( η ; ξ s ) + U r ( η ; ξ s ) exp ( j 2 π f c z ) 2 d ξ s = [ U o ( η ; ξ s ) 2 + U r ( η ; ξ s ) 2 + U o ( η ; ξ s ) U r * ( η ; ξ s ) exp ( - j 2 π f c z ) + U o * ( η ; ξ s ) U r ( η ; ξ s ) exp ( j 2 π f c z ) ] d ξ s ,
U R ( η ) = U o ( η ; ξ s ) U r * ( η ; ξ s ) d ξ s = t ( u ) P ( u λ z i + ξ s λ z o ) × P ( u λ z i + η λ z o ) δ ( η - ξ s ) d u d ξ s = t ( u ) [ P ( u λ z i + η λ z o ) ] 2 d u ,
I ( η ) = [ U o ( η ; ξ s ) 2 + U r ( η ; ξ s ) 2 ] d ξ s + 2 U o ( η ; ξ s ) U r * ( η ; ξ s ) × cos [ - j 2 π f c z + ϕ ( η ; ξ s ) ] d ξ s = I ¯ ( η ) + I c ( η ) cos [ - j 2 π f c z + ϕ ( η ) ] ,

Metrics