Abstract

Tip diameter and transmission efficiency of a visible-wavelength near-field optic probe determine both the lateral spatial resolution and experimental utility of the near-field scanning optical microscope. The commonly used tip fabrication technique, laser-heated pulling of fused-silica optical fiber followed by aperture formation through aluminization, is a complex process governed by a large number of parameters. An extensive study of the pulling parameter space has revealed a time-dependent functionality between the various pulling parameters dominated by a photon-based heating mechanism. The photon-based heat source results in a temperature and viscosity dependence that is a complex function of time and fiber diameter. Changing the taper of the optical probe can affect transmission efficiency by an order of magnitude or more.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Betzig, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
    [CrossRef] [PubMed]
  2. D. W. Pohl, “Scanning near-field optical microscopy (SNOM),” in Advances in Optical and Electron Microscopy, T. Mulvey, C. J. R. Sheppard, eds. (Academic, New York, 1991), Vol. 12, pp. 243–312.
  3. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science, 251, 1468–1470 (1991).
    [CrossRef] [PubMed]
  4. E. Betzig, R. J. Chichester, F. Lanni, D. L. Taylor, “Near-field fluorescence imaging of cytoskeletal actin,” Bioimaging 1, 129–135 (1993).
    [CrossRef]
  5. E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
    [CrossRef] [PubMed]
  6. W. P. Ambrose, P. M. Goodwin, J. C. Martin, R. A. Keller, “Single molecule detection and photochemistry on a surface using near-field optical excitation,” Phys. Rev. Lett. 72, 160–163 (1994).
    [CrossRef] [PubMed]
  7. D. Birnbaum, S.-K. Kook, R. Kopelman, “Near-field scanning optical spectroscopy: spatially resolved spectra of micro-crystals and nanoaggregates in doped polymers,” J. Phys. Chem. 97, 3091–3094 (1993).
    [CrossRef]
  8. R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
    [CrossRef]
  9. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–145 (1992).
    [CrossRef]
  10. A. Shchemelinin, M. Rudman, K. Lieberman, A. Lewis, “A simple lateral force sensing technique for near-field micropattern generation,” Rev. Sci. Instrum. 64, 3538–3541 (1993).
    [CrossRef]
  11. K. T. Flaming, D. G. Brown, Advanced Micropipette Techniques for Cell Physiology (Wiley Interscience, Chichester, 1986).
  12. R. Toldeo-Crow, P. C. Usang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
    [CrossRef]
  13. E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
    [CrossRef]
  14. Y. Yakobson, P. J. Moyer, M. A. Paesler, “Kinetic limits of sensing tip morphology in near-field scanning optical microscopes,” J. Appl. Phys. 73, 7984–7986 (1993).
    [CrossRef]
  15. J. Cline, “Development of reflection near-field scanning optical microscopy,” Ph.D. dissertation (Cornell University, Ithaca, N.Y., 1993).
  16. E. L. Buckland, P. J. Moyer, M. A. Paesler, “Resolution in collection-mode scanning optical microscopy,” J. Appl. Phys. 73, 1018–1028 (1993).
    [CrossRef]
  17. R. C. Dunn, G. R. Holtom, L. Mets, X. S. Xie, “Near-field fluorescence imaging and fluorescence lifetime measurement of light harvesting complexes in intact photosynthetic membranes,” J. Phys. Chem. 98, 3094–3098 (1994).
    [CrossRef]
  18. NIH Image v1.55, image processing software written by Wayne Rasband, available through anonymous FTP from zippy.nimh.nih.gov [128.231.98.32].
  19. L. Holland, Vacuum Deposition of Thin Films (Wiley, New York, 1956), pp. 169–176, 320–357.
  20. J. Strong, H. V. Neher, A. E. Whitford, C. H. Cartwright, R. Hayward, Procedures in Experimental Physics (Prentice-Hall, Englewood Cliffs, N.J., 1938), pp. 171–180.
  21. E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992).
    [CrossRef] [PubMed]
  22. W. P. Ambrose, Los Alamos National Laboratory, Los Alamos, N.M. 87545 (personal communication, 1993).

1994 (3)

W. P. Ambrose, P. M. Goodwin, J. C. Martin, R. A. Keller, “Single molecule detection and photochemistry on a surface using near-field optical excitation,” Phys. Rev. Lett. 72, 160–163 (1994).
[CrossRef] [PubMed]

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[CrossRef]

R. C. Dunn, G. R. Holtom, L. Mets, X. S. Xie, “Near-field fluorescence imaging and fluorescence lifetime measurement of light harvesting complexes in intact photosynthetic membranes,” J. Phys. Chem. 98, 3094–3098 (1994).
[CrossRef]

1993 (6)

A. Shchemelinin, M. Rudman, K. Lieberman, A. Lewis, “A simple lateral force sensing technique for near-field micropattern generation,” Rev. Sci. Instrum. 64, 3538–3541 (1993).
[CrossRef]

Y. Yakobson, P. J. Moyer, M. A. Paesler, “Kinetic limits of sensing tip morphology in near-field scanning optical microscopes,” J. Appl. Phys. 73, 7984–7986 (1993).
[CrossRef]

E. L. Buckland, P. J. Moyer, M. A. Paesler, “Resolution in collection-mode scanning optical microscopy,” J. Appl. Phys. 73, 1018–1028 (1993).
[CrossRef]

D. Birnbaum, S.-K. Kook, R. Kopelman, “Near-field scanning optical spectroscopy: spatially resolved spectra of micro-crystals and nanoaggregates in doped polymers,” J. Phys. Chem. 97, 3091–3094 (1993).
[CrossRef]

E. Betzig, R. J. Chichester, F. Lanni, D. L. Taylor, “Near-field fluorescence imaging of cytoskeletal actin,” Bioimaging 1, 129–135 (1993).
[CrossRef]

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[CrossRef] [PubMed]

1992 (5)

E. Betzig, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–145 (1992).
[CrossRef]

R. Toldeo-Crow, P. C. Usang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992).
[CrossRef] [PubMed]

1991 (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science, 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Ambrose, W. P.

W. P. Ambrose, P. M. Goodwin, J. C. Martin, R. A. Keller, “Single molecule detection and photochemistry on a surface using near-field optical excitation,” Phys. Rev. Lett. 72, 160–163 (1994).
[CrossRef] [PubMed]

W. P. Ambrose, Los Alamos National Laboratory, Los Alamos, N.M. 87545 (personal communication, 1993).

Betzig, E.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[CrossRef]

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[CrossRef] [PubMed]

E. Betzig, R. J. Chichester, F. Lanni, D. L. Taylor, “Near-field fluorescence imaging of cytoskeletal actin,” Bioimaging 1, 129–135 (1993).
[CrossRef]

E. Betzig, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–145 (1992).
[CrossRef]

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992).
[CrossRef] [PubMed]

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science, 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Birnbaum, D.

D. Birnbaum, S.-K. Kook, R. Kopelman, “Near-field scanning optical spectroscopy: spatially resolved spectra of micro-crystals and nanoaggregates in doped polymers,” J. Phys. Chem. 97, 3091–3094 (1993).
[CrossRef]

Brown, D. G.

K. T. Flaming, D. G. Brown, Advanced Micropipette Techniques for Cell Physiology (Wiley Interscience, Chichester, 1986).

Buckland, E. L.

E. L. Buckland, P. J. Moyer, M. A. Paesler, “Resolution in collection-mode scanning optical microscopy,” J. Appl. Phys. 73, 1018–1028 (1993).
[CrossRef]

Cartwright, C. H.

J. Strong, H. V. Neher, A. E. Whitford, C. H. Cartwright, R. Hayward, Procedures in Experimental Physics (Prentice-Hall, Englewood Cliffs, N.J., 1938), pp. 171–180.

Chen, Y.

R. Toldeo-Crow, P. C. Usang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

Chichester, R. J.

E. Betzig, R. J. Chichester, F. Lanni, D. L. Taylor, “Near-field fluorescence imaging of cytoskeletal actin,” Bioimaging 1, 129–135 (1993).
[CrossRef]

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[CrossRef] [PubMed]

Cline, J.

J. Cline, “Development of reflection near-field scanning optical microscopy,” Ph.D. dissertation (Cornell University, Ithaca, N.Y., 1993).

Dunn, R. C.

R. C. Dunn, G. R. Holtom, L. Mets, X. S. Xie, “Near-field fluorescence imaging and fluorescence lifetime measurement of light harvesting complexes in intact photosynthetic membranes,” J. Phys. Chem. 98, 3094–3098 (1994).
[CrossRef]

Finn, P. L.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–145 (1992).
[CrossRef]

Flaming, K. T.

K. T. Flaming, D. G. Brown, Advanced Micropipette Techniques for Cell Physiology (Wiley Interscience, Chichester, 1986).

Goodwin, P. M.

W. P. Ambrose, P. M. Goodwin, J. C. Martin, R. A. Keller, “Single molecule detection and photochemistry on a surface using near-field optical excitation,” Phys. Rev. Lett. 72, 160–163 (1994).
[CrossRef] [PubMed]

Grober, R. D.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[CrossRef]

Gyorgy, E. M.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–145 (1992).
[CrossRef]

Harris, T. D.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[CrossRef]

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science, 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Hayward, R.

J. Strong, H. V. Neher, A. E. Whitford, C. H. Cartwright, R. Hayward, Procedures in Experimental Physics (Prentice-Hall, Englewood Cliffs, N.J., 1938), pp. 171–180.

Holland, L.

L. Holland, Vacuum Deposition of Thin Films (Wiley, New York, 1956), pp. 169–176, 320–357.

Holtom, G. R.

R. C. Dunn, G. R. Holtom, L. Mets, X. S. Xie, “Near-field fluorescence imaging and fluorescence lifetime measurement of light harvesting complexes in intact photosynthetic membranes,” J. Phys. Chem. 98, 3094–3098 (1994).
[CrossRef]

Keller, R. A.

W. P. Ambrose, P. M. Goodwin, J. C. Martin, R. A. Keller, “Single molecule detection and photochemistry on a surface using near-field optical excitation,” Phys. Rev. Lett. 72, 160–163 (1994).
[CrossRef] [PubMed]

Kook, S.-K.

D. Birnbaum, S.-K. Kook, R. Kopelman, “Near-field scanning optical spectroscopy: spatially resolved spectra of micro-crystals and nanoaggregates in doped polymers,” J. Phys. Chem. 97, 3091–3094 (1993).
[CrossRef]

Kopelman, R.

D. Birnbaum, S.-K. Kook, R. Kopelman, “Near-field scanning optical spectroscopy: spatially resolved spectra of micro-crystals and nanoaggregates in doped polymers,” J. Phys. Chem. 97, 3091–3094 (1993).
[CrossRef]

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science, 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Lanni, F.

E. Betzig, R. J. Chichester, F. Lanni, D. L. Taylor, “Near-field fluorescence imaging of cytoskeletal actin,” Bioimaging 1, 129–135 (1993).
[CrossRef]

Lewis, A.

A. Shchemelinin, M. Rudman, K. Lieberman, A. Lewis, “A simple lateral force sensing technique for near-field micropattern generation,” Rev. Sci. Instrum. 64, 3538–3541 (1993).
[CrossRef]

Lieberman, K.

A. Shchemelinin, M. Rudman, K. Lieberman, A. Lewis, “A simple lateral force sensing technique for near-field micropattern generation,” Rev. Sci. Instrum. 64, 3538–3541 (1993).
[CrossRef]

Martin, J. C.

W. P. Ambrose, P. M. Goodwin, J. C. Martin, R. A. Keller, “Single molecule detection and photochemistry on a surface using near-field optical excitation,” Phys. Rev. Lett. 72, 160–163 (1994).
[CrossRef] [PubMed]

Mets, L.

R. C. Dunn, G. R. Holtom, L. Mets, X. S. Xie, “Near-field fluorescence imaging and fluorescence lifetime measurement of light harvesting complexes in intact photosynthetic membranes,” J. Phys. Chem. 98, 3094–3098 (1994).
[CrossRef]

Moyer, P. J.

Y. Yakobson, P. J. Moyer, M. A. Paesler, “Kinetic limits of sensing tip morphology in near-field scanning optical microscopes,” J. Appl. Phys. 73, 7984–7986 (1993).
[CrossRef]

E. L. Buckland, P. J. Moyer, M. A. Paesler, “Resolution in collection-mode scanning optical microscopy,” J. Appl. Phys. 73, 1018–1028 (1993).
[CrossRef]

Neher, H. V.

J. Strong, H. V. Neher, A. E. Whitford, C. H. Cartwright, R. Hayward, Procedures in Experimental Physics (Prentice-Hall, Englewood Cliffs, N.J., 1938), pp. 171–180.

Paesler, M. A.

E. L. Buckland, P. J. Moyer, M. A. Paesler, “Resolution in collection-mode scanning optical microscopy,” J. Appl. Phys. 73, 1018–1028 (1993).
[CrossRef]

Y. Yakobson, P. J. Moyer, M. A. Paesler, “Kinetic limits of sensing tip morphology in near-field scanning optical microscopes,” J. Appl. Phys. 73, 7984–7986 (1993).
[CrossRef]

Pfeiffer, L.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[CrossRef]

Pohl, D. W.

D. W. Pohl, “Scanning near-field optical microscopy (SNOM),” in Advances in Optical and Electron Microscopy, T. Mulvey, C. J. R. Sheppard, eds. (Academic, New York, 1991), Vol. 12, pp. 243–312.

Rudman, M.

A. Shchemelinin, M. Rudman, K. Lieberman, A. Lewis, “A simple lateral force sensing technique for near-field micropattern generation,” Rev. Sci. Instrum. 64, 3538–3541 (1993).
[CrossRef]

Shchemelinin, A.

A. Shchemelinin, M. Rudman, K. Lieberman, A. Lewis, “A simple lateral force sensing technique for near-field micropattern generation,” Rev. Sci. Instrum. 64, 3538–3541 (1993).
[CrossRef]

Strong, J.

J. Strong, H. V. Neher, A. E. Whitford, C. H. Cartwright, R. Hayward, Procedures in Experimental Physics (Prentice-Hall, Englewood Cliffs, N.J., 1938), pp. 171–180.

Taylor, D. L.

E. Betzig, R. J. Chichester, F. Lanni, D. L. Taylor, “Near-field fluorescence imaging of cytoskeletal actin,” Bioimaging 1, 129–135 (1993).
[CrossRef]

Toldeo-Crow, R.

R. Toldeo-Crow, P. C. Usang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

Trautman, J. K.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[CrossRef]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–145 (1992).
[CrossRef]

E. Betzig, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science, 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Usang, P. C.

R. Toldeo-Crow, P. C. Usang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

Vaez-Iravani, M.

R. Toldeo-Crow, P. C. Usang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

Wegscheider, W.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[CrossRef]

Weiner, J. S.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science, 251, 1468–1470 (1991).
[CrossRef] [PubMed]

West, K.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[CrossRef]

Whitford, A. E.

J. Strong, H. V. Neher, A. E. Whitford, C. H. Cartwright, R. Hayward, Procedures in Experimental Physics (Prentice-Hall, Englewood Cliffs, N.J., 1938), pp. 171–180.

Wolfe, R.

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–145 (1992).
[CrossRef]

Xie, X. S.

R. C. Dunn, G. R. Holtom, L. Mets, X. S. Xie, “Near-field fluorescence imaging and fluorescence lifetime measurement of light harvesting complexes in intact photosynthetic membranes,” J. Phys. Chem. 98, 3094–3098 (1994).
[CrossRef]

Yakobson, Y.

Y. Yakobson, P. J. Moyer, M. A. Paesler, “Kinetic limits of sensing tip morphology in near-field scanning optical microscopes,” J. Appl. Phys. 73, 7984–7986 (1993).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[CrossRef]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–145 (1992).
[CrossRef]

R. Toldeo-Crow, P. C. Usang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

Bioimaging (1)

E. Betzig, R. J. Chichester, F. Lanni, D. L. Taylor, “Near-field fluorescence imaging of cytoskeletal actin,” Bioimaging 1, 129–135 (1993).
[CrossRef]

J. Appl. Phys. (2)

Y. Yakobson, P. J. Moyer, M. A. Paesler, “Kinetic limits of sensing tip morphology in near-field scanning optical microscopes,” J. Appl. Phys. 73, 7984–7986 (1993).
[CrossRef]

E. L. Buckland, P. J. Moyer, M. A. Paesler, “Resolution in collection-mode scanning optical microscopy,” J. Appl. Phys. 73, 1018–1028 (1993).
[CrossRef]

J. Phys. Chem. (2)

R. C. Dunn, G. R. Holtom, L. Mets, X. S. Xie, “Near-field fluorescence imaging and fluorescence lifetime measurement of light harvesting complexes in intact photosynthetic membranes,” J. Phys. Chem. 98, 3094–3098 (1994).
[CrossRef]

D. Birnbaum, S.-K. Kook, R. Kopelman, “Near-field scanning optical spectroscopy: spatially resolved spectra of micro-crystals and nanoaggregates in doped polymers,” J. Phys. Chem. 97, 3091–3094 (1993).
[CrossRef]

Phys. Rev. Lett. (1)

W. P. Ambrose, P. M. Goodwin, J. C. Martin, R. A. Keller, “Single molecule detection and photochemistry on a surface using near-field optical excitation,” Phys. Rev. Lett. 72, 160–163 (1994).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. Shchemelinin, M. Rudman, K. Lieberman, A. Lewis, “A simple lateral force sensing technique for near-field micropattern generation,” Rev. Sci. Instrum. 64, 3538–3541 (1993).
[CrossRef]

Science (3)

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science, 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Other (7)

W. P. Ambrose, Los Alamos National Laboratory, Los Alamos, N.M. 87545 (personal communication, 1993).

D. W. Pohl, “Scanning near-field optical microscopy (SNOM),” in Advances in Optical and Electron Microscopy, T. Mulvey, C. J. R. Sheppard, eds. (Academic, New York, 1991), Vol. 12, pp. 243–312.

K. T. Flaming, D. G. Brown, Advanced Micropipette Techniques for Cell Physiology (Wiley Interscience, Chichester, 1986).

NIH Image v1.55, image processing software written by Wayne Rasband, available through anonymous FTP from zippy.nimh.nih.gov [128.231.98.32].

L. Holland, Vacuum Deposition of Thin Films (Wiley, New York, 1956), pp. 169–176, 320–357.

J. Strong, H. V. Neher, A. E. Whitford, C. H. Cartwright, R. Hayward, Procedures in Experimental Physics (Prentice-Hall, Englewood Cliffs, N.J., 1938), pp. 171–180.

J. Cline, “Development of reflection near-field scanning optical microscopy,” Ph.D. dissertation (Cornell University, Ithaca, N.Y., 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Block diagram of the fiber-pulling apparatus. The power meter can be translated into and out of the light path to ensure pulls take place at a constant power. Optical transmission of the infrared optics is ≥96%.

Fig. 2
Fig. 2

Scanning electron micrograph of a typical laser-heated, pulled fiber-optic probe. Total taper length is ≈750 μm, tip diameter is ≤ 200 nm, and bar is 500 μm.

Fig. 3
Fig. 3

Taper shape as a function of incident laser power, with all other pulling parameters fixed. Laser power increases from 12, 13, 14.5, 15, 16, and 18 W from pulls (a)–(f), respectively. A 100-mm focal length lens was placed 14 mm from the fiber plane; the pull setting is 100, the velocity setting is 20, and the bar is 200 μm.

Fig. 4
Fig. 4

Taper shape as a function of spot size pulled with approximate constant power density: (a) no focusing lens used, (b) lens at 30 mm, (c) lens at 75 mm from the fiber plane, with a 100-mm focal length lens. Spot sizes for (b) and (c) are approximately 80% and 48% of the native beam diameter (≈3 mm), respectively. The arrow points to the increasingly steep primary taper as spot size decreases, and the bar is 200 μm.

Fig. 5
Fig. 5

Tip diameter as a function of velocity, holding all other pulling parameters fixed. Laser power, 15 W; focusing lens, 14 mm; pull setting, 100. Each point represents the mean diameter of 5–10 pulls at that setting.

Fig. 6
Fig. 6

Trend in secondary taper shape with increasing pull strength, holding other parameters fixed, for conditions of excess heat. Pull settings of (a) 45, (b) 60, (c) 80, (d) 100, (e) 150. See text for details (bar is 20 μm).

Fig. 7
Fig. 7

Comparison of tip diameters produced under conditions of switched laser power and continuous laser power. In the switched mode the laser shutter is closed concurrent with the initiation of the strong solenoid pulling force; in the continuous mode the laser power is held constant for the duration of the pull. The pulling force for the continuous model is 75% of the value used for the switched pulls. Each point represents the mean diameter of 3–7 tips pulled under identical conditions.

Fig. 8
Fig. 8

Use of an asymmetrical weak pull to alter the shape of the primary taper and secondary filament diameter. The circles represent the areas heated by the laser beam; (a)–(c) represent the course of pull in time. In (c) the strong pull has been initiated and the tip has been formed. Note that the part of the fiber in the beam is thicker than it would be otherwise for a symmetrical pull, in which the thinnest part of the taper would be centered in the beam.

Fig. 9
Fig. 9

Characteristic mechanical resonant frequency versus mounted length of fiber. Fibers were mounted in 1-mm glass capillaries with a cyanoacrylate adhesive. Pull shape for the fibers is typical of the shape exhibited by Fig. 3(d).

Fig. 10
Fig. 10

Very small tips exhibiting a flat tip face, characteristic of a formation process involving cleavage with little or no subsequent relaxation. Tips (a) and (b) are 34 and 55 nm in diameter, respectively. The arrow in (b) points to a buildup of hydrocarbon contamination in the SEM as a result of previous high-magnification scanning (bar is 200 nm).

Fig. 11
Fig. 11

Aperture of ≈75 nm formed by the angled evaporation of aluminum. Aluminum thickness is approximately 140 nm; the deposition rate of aluminum during the coating process was 120 Å/s (bar is 100 nm).

Fig. 12
Fig. 12

Uncoated fiber probe analyzed by SEM 1 week after mounting and storage in a clean, enclosed container. Note the apparent stacking of the smallest contaminant particles on top of each other, indicating an electrostatic attraction (bar is 4 μm).

Fig. 13
Fig. 13

Effect of evaporation rate on aluminum film grain size: (a) tip ≈ 40 Å/s, (b) tip ≈ 250 Å/s; aluminum film thickness is ≈175 nm thick, and the bar is 1 μm.

Fig. 14
Fig. 14

Taper cone angle as a function of tip size for a population of ≈70 pulls from a random sampling of a wide variety of pulling parameters. The angle plotted here was measured within the last 200 nm of taper near the tip. The presence of an upper bound in cone angle is apparent for the pulling process.

Fig. 15
Fig. 15

Transmission efficiency as a function of secondary taper shape and length: high-, medium-, and low-transmission secondary tapers. Tip diameters of I, II, and III are 81, 81, and 83 nm, respectively; transmission coefficients are 3 × 10−5, 8 × 10−6, and 3 × 10−7 (bar is 10 μm).

Fig. 16
Fig. 16

Radiative transmission in uncoated probes as visualized in the optical microscope, 40×, 0.85 N.A. objective. The same fiber is observed in (a) and (c) and in (b) and (d). The arrows point to radiative light loss at a significant distance from behind the tip for (a) and (c), corresponding to a low-transmission efficiency. See text for further details (bar is 20 μm).

Tables (1)

Tables Icon

Table 1 Transmission Efficiencies of Various Optical Fiber Probesa

Metrics