Abstract

A polymer optical fiber amplifier (POFA) of the graded-index (GI) type, with gain in the visible region, was successfully prepared for the first time, to our knowledge, with the interfacial-gel polymerization technique. An input signal of 0.85 W at 591 nm was amplified to 420 W (27-dB gain) by injection of 690 W of pump power at 532 nm into a GI POFA with a 0.5-m length. The efficiency of conversion of pump energy to signal amplification was more than 60%.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Sahar, D. Treves, “Excited singlet-state absorption in dyes and their effect on dye lasers,” IEEE J. Quantum Electron. QE-13, 962–967 (1977).
    [CrossRef]
  2. W. L. Barnes, R. I. Laming, E. J. Tarbox, P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron 27, 1004–1010 (1991).
    [CrossRef]
  3. A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, K. Sasaki, “Polymer optical fiber amplifier,” Appl. Phys. Lett. 63, 883–884 (1993).
    [CrossRef]
  4. A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, T. Yamamoto, K. Fujii, K. Sasaki, “Polymer optical fiber amplifier,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 88–91.
  5. Y. Koike, “High-bandwidth graded-index polymer optical fibre,” Polymer 32, 1737–1745 (1991).
    [CrossRef]
  6. T. Ishigure, E. Nihei, Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33, 4261–4266 (1994).
    [CrossRef] [PubMed]
  7. Y. Koike, Y. Sumi, Y. Ohtsuka, “Spherical gradient-index sphere lens,” Appl. Opt. 25, 3356–3363 (1986).
    [CrossRef] [PubMed]
  8. Y. Ohtsuka, Y. Koike, “Determination of the refractive-index profile of light-focusing rods: accuracy of a method using Interphako interference microscopy,” Appl. Opt. 19, 2866–2872 (1980).
    [CrossRef] [PubMed]
  9. O. G. Peterson, J. P. Webb, W. C. McColgin, “Organic dye laser threshold,” J. Appl. Phys. 42, 1917–1928 (1971).
    [CrossRef]
  10. Organic Chemistry Division Commission on Photochemistry, International Union of Pure and Applied Chemistry, “Reference materials for fluorescence measurement,” Pure Appl. Chem.60, 1107–1114 (1988).

1994 (1)

1993 (1)

A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, K. Sasaki, “Polymer optical fiber amplifier,” Appl. Phys. Lett. 63, 883–884 (1993).
[CrossRef]

1991 (2)

Y. Koike, “High-bandwidth graded-index polymer optical fibre,” Polymer 32, 1737–1745 (1991).
[CrossRef]

W. L. Barnes, R. I. Laming, E. J. Tarbox, P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron 27, 1004–1010 (1991).
[CrossRef]

1986 (1)

1980 (1)

1977 (1)

E. Sahar, D. Treves, “Excited singlet-state absorption in dyes and their effect on dye lasers,” IEEE J. Quantum Electron. QE-13, 962–967 (1977).
[CrossRef]

1971 (1)

O. G. Peterson, J. P. Webb, W. C. McColgin, “Organic dye laser threshold,” J. Appl. Phys. 42, 1917–1928 (1971).
[CrossRef]

Barnes, W. L.

W. L. Barnes, R. I. Laming, E. J. Tarbox, P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron 27, 1004–1010 (1991).
[CrossRef]

Fujii, K.

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, T. Yamamoto, K. Fujii, K. Sasaki, “Polymer optical fiber amplifier,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 88–91.

Ishigure, T.

Kinoshita, T.

A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, K. Sasaki, “Polymer optical fiber amplifier,” Appl. Phys. Lett. 63, 883–884 (1993).
[CrossRef]

Koike, Y.

T. Ishigure, E. Nihei, Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33, 4261–4266 (1994).
[CrossRef] [PubMed]

A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, K. Sasaki, “Polymer optical fiber amplifier,” Appl. Phys. Lett. 63, 883–884 (1993).
[CrossRef]

Y. Koike, “High-bandwidth graded-index polymer optical fibre,” Polymer 32, 1737–1745 (1991).
[CrossRef]

Y. Koike, Y. Sumi, Y. Ohtsuka, “Spherical gradient-index sphere lens,” Appl. Opt. 25, 3356–3363 (1986).
[CrossRef] [PubMed]

Y. Ohtsuka, Y. Koike, “Determination of the refractive-index profile of light-focusing rods: accuracy of a method using Interphako interference microscopy,” Appl. Opt. 19, 2866–2872 (1980).
[CrossRef] [PubMed]

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, T. Yamamoto, K. Fujii, K. Sasaki, “Polymer optical fiber amplifier,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 88–91.

Laming, R. I.

W. L. Barnes, R. I. Laming, E. J. Tarbox, P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron 27, 1004–1010 (1991).
[CrossRef]

McColgin, W. C.

O. G. Peterson, J. P. Webb, W. C. McColgin, “Organic dye laser threshold,” J. Appl. Phys. 42, 1917–1928 (1971).
[CrossRef]

Morkel, P. R.

W. L. Barnes, R. I. Laming, E. J. Tarbox, P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron 27, 1004–1010 (1991).
[CrossRef]

Nihei, E.

T. Ishigure, E. Nihei, Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33, 4261–4266 (1994).
[CrossRef] [PubMed]

A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, K. Sasaki, “Polymer optical fiber amplifier,” Appl. Phys. Lett. 63, 883–884 (1993).
[CrossRef]

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, T. Yamamoto, K. Fujii, K. Sasaki, “Polymer optical fiber amplifier,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 88–91.

Ohtsuka, Y.

Peterson, O. G.

O. G. Peterson, J. P. Webb, W. C. McColgin, “Organic dye laser threshold,” J. Appl. Phys. 42, 1917–1928 (1971).
[CrossRef]

Sahar, E.

E. Sahar, D. Treves, “Excited singlet-state absorption in dyes and their effect on dye lasers,” IEEE J. Quantum Electron. QE-13, 962–967 (1977).
[CrossRef]

Sasaki, K.

A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, K. Sasaki, “Polymer optical fiber amplifier,” Appl. Phys. Lett. 63, 883–884 (1993).
[CrossRef]

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, T. Yamamoto, K. Fujii, K. Sasaki, “Polymer optical fiber amplifier,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 88–91.

Sumi, Y.

Tagaya, A.

A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, K. Sasaki, “Polymer optical fiber amplifier,” Appl. Phys. Lett. 63, 883–884 (1993).
[CrossRef]

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, T. Yamamoto, K. Fujii, K. Sasaki, “Polymer optical fiber amplifier,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 88–91.

Tarbox, E. J.

W. L. Barnes, R. I. Laming, E. J. Tarbox, P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron 27, 1004–1010 (1991).
[CrossRef]

Teramoto, S.

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, T. Yamamoto, K. Fujii, K. Sasaki, “Polymer optical fiber amplifier,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 88–91.

Treves, D.

E. Sahar, D. Treves, “Excited singlet-state absorption in dyes and their effect on dye lasers,” IEEE J. Quantum Electron. QE-13, 962–967 (1977).
[CrossRef]

Webb, J. P.

O. G. Peterson, J. P. Webb, W. C. McColgin, “Organic dye laser threshold,” J. Appl. Phys. 42, 1917–1928 (1971).
[CrossRef]

Yamamoto, T.

A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, K. Sasaki, “Polymer optical fiber amplifier,” Appl. Phys. Lett. 63, 883–884 (1993).
[CrossRef]

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, T. Yamamoto, K. Fujii, K. Sasaki, “Polymer optical fiber amplifier,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 88–91.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, K. Sasaki, “Polymer optical fiber amplifier,” Appl. Phys. Lett. 63, 883–884 (1993).
[CrossRef]

IEEE J. Quantum Electron (1)

W. L. Barnes, R. I. Laming, E. J. Tarbox, P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron 27, 1004–1010 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. Sahar, D. Treves, “Excited singlet-state absorption in dyes and their effect on dye lasers,” IEEE J. Quantum Electron. QE-13, 962–967 (1977).
[CrossRef]

J. Appl. Phys. (1)

O. G. Peterson, J. P. Webb, W. C. McColgin, “Organic dye laser threshold,” J. Appl. Phys. 42, 1917–1928 (1971).
[CrossRef]

Polymer (1)

Y. Koike, “High-bandwidth graded-index polymer optical fibre,” Polymer 32, 1737–1745 (1991).
[CrossRef]

Other (2)

Organic Chemistry Division Commission on Photochemistry, International Union of Pure and Applied Chemistry, “Reference materials for fluorescence measurement,” Pure Appl. Chem.60, 1107–1114 (1988).

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, T. Yamamoto, K. Fujii, K. Sasaki, “Polymer optical fiber amplifier,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 88–91.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Refractive-index distribution of the RB-doped GI POFA preform rod. RB concentration 10 ppm.

Fig. 2
Fig. 2

Absorption (thick solid curve), fluorescence (thin solid curve), and excitation (dashed curve) spectra of RB in PMMA bulk.

Fig. 3
Fig. 3

Experimental arrangement for investigation of the output spectra of the GI POFA. YAG, doubled Q-switched Nd:YAG laser; BS’s, beam splitters; DL, dye laser; ML’s, mirrors; AT, attenuator; MO, microscope objective; SP, spectroscope; PM, photomultiplier tube.

Fig. 4
Fig. 4

Output spectra of fiber 1 for gain levels of (a) 6 dB and (b) 11 dB. The pump source was a doubled Q-switched Nd:YAG laser at the 532-nm wavelength, and the signal was a dye laser at 591 nm: thin solid curve, only an injection signal light is used; dashed curve, only a pump light is used; thick solid curve, both the injection signal and the pump lights are used.

Fig. 5
Fig. 5

Waveforms of the pump, injection signal, and amplified signal pulses for fiber length 0.3 m, gain 20 dB, and RB concentration 10 ppm: thin solid curve, input signal pulse; dashed curve; input pump pulse; thick solid curve, amplified signal pulse.

Fig. 6
Fig. 6

Signal gain versus pump power for the RB-doped GI POFA with 0.5-mm outer and 0.25-mm core diameters. The pump wavelength was 532 nm, and the injection signal power at the 591-nm wavelength was 0.85 W. ●, fiber 1: length 0.5 m, RB concentration 10 ppm; □, fiber 2: length 1.2 m, RB concentration 0.01 ppm.

Metrics