Abstract

The first experimental results, to our knowledge, for an optical modulator that makes use of an electro-optic polymer located between two thin silver films are presented. The methods used to fabricate the modulator are discussed. Initial results show 18.5% modulation in the intensity of the light reflected off of the modulator at a wavelength of 6328 Å.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Senior, Optical Fiber Communications: Principles and Practice, 2nd ed. (Prentice-Hall, New York, 1992), p. 542.
  2. C. Plumereau, A. Bouchoux, A. Cachard, “Electrooptic light modulator using long-range surface plasmons,” in Novel Optoelectronic Devices, M. J. Adams, ed., Proc. Soc. Photo-Opt. Instrum. Eng.800, 79–83 (1987).
  3. J. Schildkraut, “Long-range surface plasmon electrooptic modulator,” Appl. Opt. 27, 4587–4590 (1988).
    [Crossref] [PubMed]
  4. A. F. Evans, D. G. Hall, Measurement of the electrically induced refractive index change in silicon for wavelength 1.3 microns using a Schouky diode,” Appl. Phys. Lett. 56, 212–214 (1990).
    [Crossref]
  5. O. Solgaard, F. Ho, J. I. Thackara, D. M. Bloom, “High frequency attenuated total internal reflection light modulator,” Appl. Phys. Lett. 61, 2500–2502 (1992).
    [Crossref]
  6. C. A. Ward, K. Bhasin, R. J. Bell, R. W. Alexander, I. Tyler, “Multimedia dispersion relation for surface electromagnetic waves,” J. Chem. Phys. 26, 1674–1676 (1975).
    [Crossref]
  7. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice-Hall, Englewood Cliffs, N.J., 1991), pp. 43–45.
  8. C. Jung, S. Yee, K. Kuhn, “Integrated optical waveguide modulator using long range surface plasmon resonance,” in Integrated Photonics Research, Vol. 3 of 1994 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1994), pp. 118–120.
  9. K. D. Singer, Polymers for Lightwave and Integrated Optics, L. A. Hornak, ed. (Dekker, New York, 1992), p. 331.
  10. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1988), p. 307.
  11. D. Haas, H. Yoon, H. Man, G. Cross, S. Mann, N. Parsons, “Polymeric electro-optic waveguide modulator: materials and fabrication,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1147, 222–232 (1989).

1992 (1)

O. Solgaard, F. Ho, J. I. Thackara, D. M. Bloom, “High frequency attenuated total internal reflection light modulator,” Appl. Phys. Lett. 61, 2500–2502 (1992).
[Crossref]

1990 (1)

A. F. Evans, D. G. Hall, Measurement of the electrically induced refractive index change in silicon for wavelength 1.3 microns using a Schouky diode,” Appl. Phys. Lett. 56, 212–214 (1990).
[Crossref]

1988 (1)

1975 (1)

C. A. Ward, K. Bhasin, R. J. Bell, R. W. Alexander, I. Tyler, “Multimedia dispersion relation for surface electromagnetic waves,” J. Chem. Phys. 26, 1674–1676 (1975).
[Crossref]

Alexander, R. W.

C. A. Ward, K. Bhasin, R. J. Bell, R. W. Alexander, I. Tyler, “Multimedia dispersion relation for surface electromagnetic waves,” J. Chem. Phys. 26, 1674–1676 (1975).
[Crossref]

Bell, R. J.

C. A. Ward, K. Bhasin, R. J. Bell, R. W. Alexander, I. Tyler, “Multimedia dispersion relation for surface electromagnetic waves,” J. Chem. Phys. 26, 1674–1676 (1975).
[Crossref]

Bhasin, K.

C. A. Ward, K. Bhasin, R. J. Bell, R. W. Alexander, I. Tyler, “Multimedia dispersion relation for surface electromagnetic waves,” J. Chem. Phys. 26, 1674–1676 (1975).
[Crossref]

Bloom, D. M.

O. Solgaard, F. Ho, J. I. Thackara, D. M. Bloom, “High frequency attenuated total internal reflection light modulator,” Appl. Phys. Lett. 61, 2500–2502 (1992).
[Crossref]

Bouchoux, A.

C. Plumereau, A. Bouchoux, A. Cachard, “Electrooptic light modulator using long-range surface plasmons,” in Novel Optoelectronic Devices, M. J. Adams, ed., Proc. Soc. Photo-Opt. Instrum. Eng.800, 79–83 (1987).

Cachard, A.

C. Plumereau, A. Bouchoux, A. Cachard, “Electrooptic light modulator using long-range surface plasmons,” in Novel Optoelectronic Devices, M. J. Adams, ed., Proc. Soc. Photo-Opt. Instrum. Eng.800, 79–83 (1987).

Cross, G.

D. Haas, H. Yoon, H. Man, G. Cross, S. Mann, N. Parsons, “Polymeric electro-optic waveguide modulator: materials and fabrication,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1147, 222–232 (1989).

Evans, A. F.

A. F. Evans, D. G. Hall, Measurement of the electrically induced refractive index change in silicon for wavelength 1.3 microns using a Schouky diode,” Appl. Phys. Lett. 56, 212–214 (1990).
[Crossref]

Haas, D.

D. Haas, H. Yoon, H. Man, G. Cross, S. Mann, N. Parsons, “Polymeric electro-optic waveguide modulator: materials and fabrication,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1147, 222–232 (1989).

Hall, D. G.

A. F. Evans, D. G. Hall, Measurement of the electrically induced refractive index change in silicon for wavelength 1.3 microns using a Schouky diode,” Appl. Phys. Lett. 56, 212–214 (1990).
[Crossref]

Ho, F.

O. Solgaard, F. Ho, J. I. Thackara, D. M. Bloom, “High frequency attenuated total internal reflection light modulator,” Appl. Phys. Lett. 61, 2500–2502 (1992).
[Crossref]

Ishimaru, A.

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice-Hall, Englewood Cliffs, N.J., 1991), pp. 43–45.

Jung, C.

C. Jung, S. Yee, K. Kuhn, “Integrated optical waveguide modulator using long range surface plasmon resonance,” in Integrated Photonics Research, Vol. 3 of 1994 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1994), pp. 118–120.

Kuhn, K.

C. Jung, S. Yee, K. Kuhn, “Integrated optical waveguide modulator using long range surface plasmon resonance,” in Integrated Photonics Research, Vol. 3 of 1994 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1994), pp. 118–120.

Man, H.

D. Haas, H. Yoon, H. Man, G. Cross, S. Mann, N. Parsons, “Polymeric electro-optic waveguide modulator: materials and fabrication,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1147, 222–232 (1989).

Mann, S.

D. Haas, H. Yoon, H. Man, G. Cross, S. Mann, N. Parsons, “Polymeric electro-optic waveguide modulator: materials and fabrication,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1147, 222–232 (1989).

Parsons, N.

D. Haas, H. Yoon, H. Man, G. Cross, S. Mann, N. Parsons, “Polymeric electro-optic waveguide modulator: materials and fabrication,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1147, 222–232 (1989).

Plumereau, C.

C. Plumereau, A. Bouchoux, A. Cachard, “Electrooptic light modulator using long-range surface plasmons,” in Novel Optoelectronic Devices, M. J. Adams, ed., Proc. Soc. Photo-Opt. Instrum. Eng.800, 79–83 (1987).

Schildkraut, J.

Senior, J. M.

J. M. Senior, Optical Fiber Communications: Principles and Practice, 2nd ed. (Prentice-Hall, New York, 1992), p. 542.

Singer, K. D.

K. D. Singer, Polymers for Lightwave and Integrated Optics, L. A. Hornak, ed. (Dekker, New York, 1992), p. 331.

Solgaard, O.

O. Solgaard, F. Ho, J. I. Thackara, D. M. Bloom, “High frequency attenuated total internal reflection light modulator,” Appl. Phys. Lett. 61, 2500–2502 (1992).
[Crossref]

Thackara, J. I.

O. Solgaard, F. Ho, J. I. Thackara, D. M. Bloom, “High frequency attenuated total internal reflection light modulator,” Appl. Phys. Lett. 61, 2500–2502 (1992).
[Crossref]

Tyler, I.

C. A. Ward, K. Bhasin, R. J. Bell, R. W. Alexander, I. Tyler, “Multimedia dispersion relation for surface electromagnetic waves,” J. Chem. Phys. 26, 1674–1676 (1975).
[Crossref]

Ward, C. A.

C. A. Ward, K. Bhasin, R. J. Bell, R. W. Alexander, I. Tyler, “Multimedia dispersion relation for surface electromagnetic waves,” J. Chem. Phys. 26, 1674–1676 (1975).
[Crossref]

Yariv, A.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1988), p. 307.

Yee, S.

C. Jung, S. Yee, K. Kuhn, “Integrated optical waveguide modulator using long range surface plasmon resonance,” in Integrated Photonics Research, Vol. 3 of 1994 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1994), pp. 118–120.

Yoon, H.

D. Haas, H. Yoon, H. Man, G. Cross, S. Mann, N. Parsons, “Polymeric electro-optic waveguide modulator: materials and fabrication,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1147, 222–232 (1989).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. F. Evans, D. G. Hall, Measurement of the electrically induced refractive index change in silicon for wavelength 1.3 microns using a Schouky diode,” Appl. Phys. Lett. 56, 212–214 (1990).
[Crossref]

O. Solgaard, F. Ho, J. I. Thackara, D. M. Bloom, “High frequency attenuated total internal reflection light modulator,” Appl. Phys. Lett. 61, 2500–2502 (1992).
[Crossref]

J. Chem. Phys. (1)

C. A. Ward, K. Bhasin, R. J. Bell, R. W. Alexander, I. Tyler, “Multimedia dispersion relation for surface electromagnetic waves,” J. Chem. Phys. 26, 1674–1676 (1975).
[Crossref]

Other (7)

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice-Hall, Englewood Cliffs, N.J., 1991), pp. 43–45.

C. Jung, S. Yee, K. Kuhn, “Integrated optical waveguide modulator using long range surface plasmon resonance,” in Integrated Photonics Research, Vol. 3 of 1994 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1994), pp. 118–120.

K. D. Singer, Polymers for Lightwave and Integrated Optics, L. A. Hornak, ed. (Dekker, New York, 1992), p. 331.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1988), p. 307.

D. Haas, H. Yoon, H. Man, G. Cross, S. Mann, N. Parsons, “Polymeric electro-optic waveguide modulator: materials and fabrication,” in Nonlinear Optical Properties of Organic Materials II, G. Khanarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1147, 222–232 (1989).

J. M. Senior, Optical Fiber Communications: Principles and Practice, 2nd ed. (Prentice-Hall, New York, 1992), p. 542.

C. Plumereau, A. Bouchoux, A. Cachard, “Electrooptic light modulator using long-range surface plasmons,” in Novel Optoelectronic Devices, M. J. Adams, ed., Proc. Soc. Photo-Opt. Instrum. Eng.800, 79–83 (1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

TM-polarized incident light reflects off of the surface of the lower silver film at the resonance angle θspr, creating an evanescent wave that penetrates through the lower silver film and excites a SPW at the interface between the lower silver film and the electro-optic polymer.

Fig. 2
Fig. 2

Theoretical plots of the reflected light intensity versus the index of refraction of the electro-optic (EO) polymer for the same modulator operated at three different wavelengths.

Fig. 3
Fig. 3

SPR optical modulator located on the top of an SF-59 substrate. A voltage is applied to the two silver electrodes, which changes the index of refraction of the electro-optic polymer, causing a modulation in the intensity of light in the substrate.

Fig. 4
Fig. 4

Oscilloscope trace showing the applied-voltage waveform (V pp = 20 V) and the modulated-light-intensity waveform (V pp = 10 mV) at a frequency of 100 kHz.

Fig. 5
Fig. 5

Intensity of light coming out of the end of the SF-59 substrate as a function of the applied voltage. Ten intensity readings were recorded with 100 V applied across the modulator. The voltage was then switched off and ten more intensity values were recorded, etc.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n = n 0 3 r E 2 ,

Metrics