Abstract

We describe a newly developed three-dimensional visual stimulator (TVS) that can change independently the directions, distances, sizes, luminance, and varieties of two sets of targets for both eyes. It consists of liquid crystal projectors (LCP’s) that generate the flexible images of targets, Badal otometers that change target distances without changing the visual angles, and relay-lens systems that change target directions. A special control program is developed for real-time control of six motors and two LCP’s in the TVS together with a three-dimensional optometer III that simultaneously measures eye movement, accommodation, pupil diameter, and head movement. The TVS measurement ranges are as follows: distance, 0 to −20 D; direction, ±16° horizontally and ±15° vertically; size, 0–2° visual angle; and luminance, 10−2–102 cd/m2. The target images are refreshed at 60 Hz and speeds with which the target makes a smooth change (ramp stimuli) are as follows: distance, 5 D/s; direction, 30°/s, size, 10°/s. A simple application demonstrates the performance.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Schor, J. C. Kotulak, “Dynamic interactions between accommodation and convergence are velocity sensitive,” Vision. Res. 26, 927–942 (1986).
    [CrossRef] [PubMed]
  2. G. A. Myers, L. Stark, “Topology of the near response triad,” Ophthalmol. Physiol. Optom. 10, 175–181 (1990).
    [CrossRef]
  3. T. Takeda, Y. Fukui, T. Iida, “Three-dimensional optometer,” Appl. Opt. 27, 2595–2602 (1988).
    [CrossRef] [PubMed]
  4. T. Takeda, Y. Fukui, T. Iida, “Three-dimensional optometer III,” Appl. Opt. 32, 4155–4168 (1993).
    [CrossRef] [PubMed]
  5. T. Takeda, T. Iida, Y. Fukui, “Dynamic eye accommodation induced by depth sensation,” Optom. Vision Sci. 67, 450–455 (1990).
    [CrossRef]
  6. T. Takeda, C. Neveu, L. Stark, “Accommodation on downward gaze,” Optom. Vision Sci. 69, 556–561 (1992).
    [CrossRef]
  7. H. D. Crane, M. R. Clark, “Three-dimensional visual stimulus deflector,” Appl. Opt. 17, 706–714 (1978).
    [CrossRef] [PubMed]
  8. L. W. Alvarez, “Development of variable focus lenses and a new refractor,” J. Am. Opt. Assoc. 49, 24–29 (1978).
  9. P. B. Kruger, J. Pola, “Dioptric and nondioptric stimuli for accommodation: target size alone with blur and chromatic aberration,” Vision Res. 27, 555–567 (1987).
    [CrossRef] [PubMed]
  10. Y. Fukui, T. Takeda, T. Iida, “Numerical analysis of three-dimensional optometer,” J. Ophthalmol. Opt. Jpn. 8, 89–93 (1987) (in Japanese).
  11. D. Cline, H. W. Hofstetter, J. R. Griffin, Dictionary of Visual Science (Chilton, Radnor, Pa., 1989), pp. 5–8, 273.
  12. L. M. Smithline, “Accommodative response to blur,” J. Opt. Soc. Am. 64, 1512–1516 (1974).
    [CrossRef] [PubMed]
  13. P. B. Kruger, J. Pola, “Changing target size is a stimulus for accommodation.” J. Opt. Soc. Am. A 2, 1832–1835 (1985).
    [CrossRef] [PubMed]
  14. A. Watanabe, T. Yoshida, “Control mechanism of the accommodation-vergence eye-movement system in human eyes,” NHK (Nippon Hoso Kyokai) Tech. Monogr. 21, 3–31 (1973).

1993 (1)

1992 (1)

T. Takeda, C. Neveu, L. Stark, “Accommodation on downward gaze,” Optom. Vision Sci. 69, 556–561 (1992).
[CrossRef]

1990 (2)

T. Takeda, T. Iida, Y. Fukui, “Dynamic eye accommodation induced by depth sensation,” Optom. Vision Sci. 67, 450–455 (1990).
[CrossRef]

G. A. Myers, L. Stark, “Topology of the near response triad,” Ophthalmol. Physiol. Optom. 10, 175–181 (1990).
[CrossRef]

1988 (1)

1987 (2)

P. B. Kruger, J. Pola, “Dioptric and nondioptric stimuli for accommodation: target size alone with blur and chromatic aberration,” Vision Res. 27, 555–567 (1987).
[CrossRef] [PubMed]

Y. Fukui, T. Takeda, T. Iida, “Numerical analysis of three-dimensional optometer,” J. Ophthalmol. Opt. Jpn. 8, 89–93 (1987) (in Japanese).

1986 (1)

C. M. Schor, J. C. Kotulak, “Dynamic interactions between accommodation and convergence are velocity sensitive,” Vision. Res. 26, 927–942 (1986).
[CrossRef] [PubMed]

1985 (1)

1978 (2)

H. D. Crane, M. R. Clark, “Three-dimensional visual stimulus deflector,” Appl. Opt. 17, 706–714 (1978).
[CrossRef] [PubMed]

L. W. Alvarez, “Development of variable focus lenses and a new refractor,” J. Am. Opt. Assoc. 49, 24–29 (1978).

1974 (1)

1973 (1)

A. Watanabe, T. Yoshida, “Control mechanism of the accommodation-vergence eye-movement system in human eyes,” NHK (Nippon Hoso Kyokai) Tech. Monogr. 21, 3–31 (1973).

Alvarez, L. W.

L. W. Alvarez, “Development of variable focus lenses and a new refractor,” J. Am. Opt. Assoc. 49, 24–29 (1978).

Clark, M. R.

Cline, D.

D. Cline, H. W. Hofstetter, J. R. Griffin, Dictionary of Visual Science (Chilton, Radnor, Pa., 1989), pp. 5–8, 273.

Crane, H. D.

Fukui, Y.

T. Takeda, Y. Fukui, T. Iida, “Three-dimensional optometer III,” Appl. Opt. 32, 4155–4168 (1993).
[CrossRef] [PubMed]

T. Takeda, T. Iida, Y. Fukui, “Dynamic eye accommodation induced by depth sensation,” Optom. Vision Sci. 67, 450–455 (1990).
[CrossRef]

T. Takeda, Y. Fukui, T. Iida, “Three-dimensional optometer,” Appl. Opt. 27, 2595–2602 (1988).
[CrossRef] [PubMed]

Y. Fukui, T. Takeda, T. Iida, “Numerical analysis of three-dimensional optometer,” J. Ophthalmol. Opt. Jpn. 8, 89–93 (1987) (in Japanese).

Griffin, J. R.

D. Cline, H. W. Hofstetter, J. R. Griffin, Dictionary of Visual Science (Chilton, Radnor, Pa., 1989), pp. 5–8, 273.

Hofstetter, H. W.

D. Cline, H. W. Hofstetter, J. R. Griffin, Dictionary of Visual Science (Chilton, Radnor, Pa., 1989), pp. 5–8, 273.

Iida, T.

T. Takeda, Y. Fukui, T. Iida, “Three-dimensional optometer III,” Appl. Opt. 32, 4155–4168 (1993).
[CrossRef] [PubMed]

T. Takeda, T. Iida, Y. Fukui, “Dynamic eye accommodation induced by depth sensation,” Optom. Vision Sci. 67, 450–455 (1990).
[CrossRef]

T. Takeda, Y. Fukui, T. Iida, “Three-dimensional optometer,” Appl. Opt. 27, 2595–2602 (1988).
[CrossRef] [PubMed]

Y. Fukui, T. Takeda, T. Iida, “Numerical analysis of three-dimensional optometer,” J. Ophthalmol. Opt. Jpn. 8, 89–93 (1987) (in Japanese).

Kotulak, J. C.

C. M. Schor, J. C. Kotulak, “Dynamic interactions between accommodation and convergence are velocity sensitive,” Vision. Res. 26, 927–942 (1986).
[CrossRef] [PubMed]

Kruger, P. B.

P. B. Kruger, J. Pola, “Dioptric and nondioptric stimuli for accommodation: target size alone with blur and chromatic aberration,” Vision Res. 27, 555–567 (1987).
[CrossRef] [PubMed]

P. B. Kruger, J. Pola, “Changing target size is a stimulus for accommodation.” J. Opt. Soc. Am. A 2, 1832–1835 (1985).
[CrossRef] [PubMed]

Myers, G. A.

G. A. Myers, L. Stark, “Topology of the near response triad,” Ophthalmol. Physiol. Optom. 10, 175–181 (1990).
[CrossRef]

Neveu, C.

T. Takeda, C. Neveu, L. Stark, “Accommodation on downward gaze,” Optom. Vision Sci. 69, 556–561 (1992).
[CrossRef]

Pola, J.

P. B. Kruger, J. Pola, “Dioptric and nondioptric stimuli for accommodation: target size alone with blur and chromatic aberration,” Vision Res. 27, 555–567 (1987).
[CrossRef] [PubMed]

P. B. Kruger, J. Pola, “Changing target size is a stimulus for accommodation.” J. Opt. Soc. Am. A 2, 1832–1835 (1985).
[CrossRef] [PubMed]

Schor, C. M.

C. M. Schor, J. C. Kotulak, “Dynamic interactions between accommodation and convergence are velocity sensitive,” Vision. Res. 26, 927–942 (1986).
[CrossRef] [PubMed]

Smithline, L. M.

Stark, L.

T. Takeda, C. Neveu, L. Stark, “Accommodation on downward gaze,” Optom. Vision Sci. 69, 556–561 (1992).
[CrossRef]

G. A. Myers, L. Stark, “Topology of the near response triad,” Ophthalmol. Physiol. Optom. 10, 175–181 (1990).
[CrossRef]

Takeda, T.

T. Takeda, Y. Fukui, T. Iida, “Three-dimensional optometer III,” Appl. Opt. 32, 4155–4168 (1993).
[CrossRef] [PubMed]

T. Takeda, C. Neveu, L. Stark, “Accommodation on downward gaze,” Optom. Vision Sci. 69, 556–561 (1992).
[CrossRef]

T. Takeda, T. Iida, Y. Fukui, “Dynamic eye accommodation induced by depth sensation,” Optom. Vision Sci. 67, 450–455 (1990).
[CrossRef]

T. Takeda, Y. Fukui, T. Iida, “Three-dimensional optometer,” Appl. Opt. 27, 2595–2602 (1988).
[CrossRef] [PubMed]

Y. Fukui, T. Takeda, T. Iida, “Numerical analysis of three-dimensional optometer,” J. Ophthalmol. Opt. Jpn. 8, 89–93 (1987) (in Japanese).

Watanabe, A.

A. Watanabe, T. Yoshida, “Control mechanism of the accommodation-vergence eye-movement system in human eyes,” NHK (Nippon Hoso Kyokai) Tech. Monogr. 21, 3–31 (1973).

Yoshida, T.

A. Watanabe, T. Yoshida, “Control mechanism of the accommodation-vergence eye-movement system in human eyes,” NHK (Nippon Hoso Kyokai) Tech. Monogr. 21, 3–31 (1973).

Appl. Opt. (3)

J. Am. Opt. Assoc. (1)

L. W. Alvarez, “Development of variable focus lenses and a new refractor,” J. Am. Opt. Assoc. 49, 24–29 (1978).

J. Ophthalmol. Opt. Jpn. (1)

Y. Fukui, T. Takeda, T. Iida, “Numerical analysis of three-dimensional optometer,” J. Ophthalmol. Opt. Jpn. 8, 89–93 (1987) (in Japanese).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

NHK (Nippon Hoso Kyokai) Tech. Monogr. (1)

A. Watanabe, T. Yoshida, “Control mechanism of the accommodation-vergence eye-movement system in human eyes,” NHK (Nippon Hoso Kyokai) Tech. Monogr. 21, 3–31 (1973).

Ophthalmol. Physiol. Optom. (1)

G. A. Myers, L. Stark, “Topology of the near response triad,” Ophthalmol. Physiol. Optom. 10, 175–181 (1990).
[CrossRef]

Optom. Vision Sci. (2)

T. Takeda, T. Iida, Y. Fukui, “Dynamic eye accommodation induced by depth sensation,” Optom. Vision Sci. 67, 450–455 (1990).
[CrossRef]

T. Takeda, C. Neveu, L. Stark, “Accommodation on downward gaze,” Optom. Vision Sci. 69, 556–561 (1992).
[CrossRef]

Vision Res. (1)

P. B. Kruger, J. Pola, “Dioptric and nondioptric stimuli for accommodation: target size alone with blur and chromatic aberration,” Vision Res. 27, 555–567 (1987).
[CrossRef] [PubMed]

Vision. Res. (1)

C. M. Schor, J. C. Kotulak, “Dynamic interactions between accommodation and convergence are velocity sensitive,” Vision. Res. 26, 927–942 (1986).
[CrossRef] [PubMed]

Other (1)

D. Cline, H. W. Hofstetter, J. R. Griffin, Dictionary of Visual Science (Chilton, Radnor, Pa., 1989), pp. 5–8, 273.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the optical system of a TVS that can change target direction, distance, size, luminance, and form combining a LCP, Badal optometer, and relay-lens system: LH, lens holder; ASM, axis shift mirror.

Fig. 2
Fig. 2

Basic principle of the target direction change in the TVS.

Fig. 3
Fig. 3

Realized arrangement of the direction changer. Eye Er is shifted horizontally by half of the interpupillary distance d.

Fig. 4
Fig. 4

Principle to minimize the distortion induced by the off-axis effect by the orthogonal arrangement of two spherical mirrors.

Fig. 5
Fig. 5

Principle of the axis shift mirror that is used to adjust the distance between the eyes. MM, movable mirror.

Fig. 6
Fig. 6

Realized optical system of the TVS. The off-axis arrangements of the two spherical mirrors minimize distortion. Er, right eye; O, center of the SM.

Fig. 7
Fig. 7

Setup of the TVS.

Fig. 8
Fig. 8

Block diagram of the control system of the TVS and TDO. A/D, analog-to-digital converter; G I/O, general input/output board.

Fig. 9
Fig. 9

Experimental setup showing the TDO III (left) and TVS (right).

Fig. 10
Fig. 10

Responses toward four different stimuli listed in Table 1. Responses decrease as the stimuli become less realistic. Acc, accommodation (1.5 D/dev); Ver, vergence (5°/dev); broken and chain lines represent distance and vergence change.

Tables (2)

Tables Icon

Table 1 Four Experimental Categoriesa

Tables Icon

Table 2 Characteristics of the TVSa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 / ( f b ) = x / f 2 .

Metrics