Abstract

Lensless in-line bandpass filters with low insertion losses and high backreflection losses are achieved with expanded-core fibers. It has been experimentally shown that using a large modal-field diameter of expanded-core fibers can resolve the problem of the trade-off between the insertion loss and backreflection. The reduction in the outer diameter, usually occurring when the modal-field diameter is enlarged to an extent, was suppressed at an optimized heating condition.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kawakami, K. Shiraishi, Y. Aizawa, “A method to realize fiber-embedded optical devices,” in Proceedings of the Second Conference on Optoelectronics (Institute of Electronics, Information, and Communications Engineers, Japan, 1988), paper 3C2-3.
  2. K. Shiraishi, Y. Aizawa, S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8, 1151–1161 (1990).
    [CrossRef]
  3. O. Hanaizumi, Y. Aizawa, H. Minamide, S. Kawakami, “Fabrication of TEC fiber with MFD 40 μm,” in Proceedings of the 1993 Spring Conference (Institute of Electronics, Information, and Communications Engineers, Japan, 1993), paper C-241 (in Japanese).
  4. J. Stone, L. W. Stulz, D. Marcuse, C. A. Burrus, J. C. Centanni, “Narrow-band FiEnd étalon filters using expanded-core fibers,” J. Lightwave Technol. 10, 1851–1854 (1992).
    [CrossRef]
  5. T. Oguchi, H. Hanafusa, “Thermally diffused expanded core fibers and their applications to photonic components,” in Proceedings of the Ninth Meeting on Lightwave Sensing Technology (Japan Society of Lightwave Sensing Technology and Japan Society of Applied Physics, Japan, 1992), paper LST 9-5 (in Japanese).
  6. D. Marcuse, J. Stone, “Fiber-coupled short Fabry–Perot resonators,” J. Lightwave Technol. 7, 869–876 (1989).
    [CrossRef]
  7. H. Hanafusa, M. Horiguchi, J. Noda, “Thermally diffused expanded core fibers for low-loss and inexpensive photonic components,” Electron. Lett. 27, 1968–1969 (1991).
    [CrossRef]
  8. C. P. Botham, “Theory of tapered single-mode optical fibers by controlled core diffusion,” Electron. Lett. 24, 243–244 (1988).
    [CrossRef]
  9. J. S. Harper, C. P. Botham, S. Hornung, “Tapers in single-mode optical fiber by controlled core diffusion,” Electron. Lett. 24, 245–246 (1988).
    [CrossRef]
  10. M. N. Mclandrich, “Core dopant profiles in weakly fused single-mode fibers,” Electron. Lett. 24, 8–9 (1988).
    [CrossRef]
  11. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

1992

J. Stone, L. W. Stulz, D. Marcuse, C. A. Burrus, J. C. Centanni, “Narrow-band FiEnd étalon filters using expanded-core fibers,” J. Lightwave Technol. 10, 1851–1854 (1992).
[CrossRef]

1991

H. Hanafusa, M. Horiguchi, J. Noda, “Thermally diffused expanded core fibers for low-loss and inexpensive photonic components,” Electron. Lett. 27, 1968–1969 (1991).
[CrossRef]

1990

K. Shiraishi, Y. Aizawa, S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8, 1151–1161 (1990).
[CrossRef]

1989

D. Marcuse, J. Stone, “Fiber-coupled short Fabry–Perot resonators,” J. Lightwave Technol. 7, 869–876 (1989).
[CrossRef]

1988

C. P. Botham, “Theory of tapered single-mode optical fibers by controlled core diffusion,” Electron. Lett. 24, 243–244 (1988).
[CrossRef]

J. S. Harper, C. P. Botham, S. Hornung, “Tapers in single-mode optical fiber by controlled core diffusion,” Electron. Lett. 24, 245–246 (1988).
[CrossRef]

M. N. Mclandrich, “Core dopant profiles in weakly fused single-mode fibers,” Electron. Lett. 24, 8–9 (1988).
[CrossRef]

1977

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

Aizawa, Y.

K. Shiraishi, Y. Aizawa, S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8, 1151–1161 (1990).
[CrossRef]

S. Kawakami, K. Shiraishi, Y. Aizawa, “A method to realize fiber-embedded optical devices,” in Proceedings of the Second Conference on Optoelectronics (Institute of Electronics, Information, and Communications Engineers, Japan, 1988), paper 3C2-3.

O. Hanaizumi, Y. Aizawa, H. Minamide, S. Kawakami, “Fabrication of TEC fiber with MFD 40 μm,” in Proceedings of the 1993 Spring Conference (Institute of Electronics, Information, and Communications Engineers, Japan, 1993), paper C-241 (in Japanese).

Botham, C. P.

J. S. Harper, C. P. Botham, S. Hornung, “Tapers in single-mode optical fiber by controlled core diffusion,” Electron. Lett. 24, 245–246 (1988).
[CrossRef]

C. P. Botham, “Theory of tapered single-mode optical fibers by controlled core diffusion,” Electron. Lett. 24, 243–244 (1988).
[CrossRef]

Burrus, C. A.

J. Stone, L. W. Stulz, D. Marcuse, C. A. Burrus, J. C. Centanni, “Narrow-band FiEnd étalon filters using expanded-core fibers,” J. Lightwave Technol. 10, 1851–1854 (1992).
[CrossRef]

Centanni, J. C.

J. Stone, L. W. Stulz, D. Marcuse, C. A. Burrus, J. C. Centanni, “Narrow-band FiEnd étalon filters using expanded-core fibers,” J. Lightwave Technol. 10, 1851–1854 (1992).
[CrossRef]

Hanafusa, H.

H. Hanafusa, M. Horiguchi, J. Noda, “Thermally diffused expanded core fibers for low-loss and inexpensive photonic components,” Electron. Lett. 27, 1968–1969 (1991).
[CrossRef]

T. Oguchi, H. Hanafusa, “Thermally diffused expanded core fibers and their applications to photonic components,” in Proceedings of the Ninth Meeting on Lightwave Sensing Technology (Japan Society of Lightwave Sensing Technology and Japan Society of Applied Physics, Japan, 1992), paper LST 9-5 (in Japanese).

Hanaizumi, O.

O. Hanaizumi, Y. Aizawa, H. Minamide, S. Kawakami, “Fabrication of TEC fiber with MFD 40 μm,” in Proceedings of the 1993 Spring Conference (Institute of Electronics, Information, and Communications Engineers, Japan, 1993), paper C-241 (in Japanese).

Harper, J. S.

J. S. Harper, C. P. Botham, S. Hornung, “Tapers in single-mode optical fiber by controlled core diffusion,” Electron. Lett. 24, 245–246 (1988).
[CrossRef]

Horiguchi, M.

H. Hanafusa, M. Horiguchi, J. Noda, “Thermally diffused expanded core fibers for low-loss and inexpensive photonic components,” Electron. Lett. 27, 1968–1969 (1991).
[CrossRef]

Hornung, S.

J. S. Harper, C. P. Botham, S. Hornung, “Tapers in single-mode optical fiber by controlled core diffusion,” Electron. Lett. 24, 245–246 (1988).
[CrossRef]

Kawakami, S.

K. Shiraishi, Y. Aizawa, S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8, 1151–1161 (1990).
[CrossRef]

S. Kawakami, K. Shiraishi, Y. Aizawa, “A method to realize fiber-embedded optical devices,” in Proceedings of the Second Conference on Optoelectronics (Institute of Electronics, Information, and Communications Engineers, Japan, 1988), paper 3C2-3.

O. Hanaizumi, Y. Aizawa, H. Minamide, S. Kawakami, “Fabrication of TEC fiber with MFD 40 μm,” in Proceedings of the 1993 Spring Conference (Institute of Electronics, Information, and Communications Engineers, Japan, 1993), paper C-241 (in Japanese).

Marcuse, D.

J. Stone, L. W. Stulz, D. Marcuse, C. A. Burrus, J. C. Centanni, “Narrow-band FiEnd étalon filters using expanded-core fibers,” J. Lightwave Technol. 10, 1851–1854 (1992).
[CrossRef]

D. Marcuse, J. Stone, “Fiber-coupled short Fabry–Perot resonators,” J. Lightwave Technol. 7, 869–876 (1989).
[CrossRef]

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

Mclandrich, M. N.

M. N. Mclandrich, “Core dopant profiles in weakly fused single-mode fibers,” Electron. Lett. 24, 8–9 (1988).
[CrossRef]

Minamide, H.

O. Hanaizumi, Y. Aizawa, H. Minamide, S. Kawakami, “Fabrication of TEC fiber with MFD 40 μm,” in Proceedings of the 1993 Spring Conference (Institute of Electronics, Information, and Communications Engineers, Japan, 1993), paper C-241 (in Japanese).

Noda, J.

H. Hanafusa, M. Horiguchi, J. Noda, “Thermally diffused expanded core fibers for low-loss and inexpensive photonic components,” Electron. Lett. 27, 1968–1969 (1991).
[CrossRef]

Oguchi, T.

T. Oguchi, H. Hanafusa, “Thermally diffused expanded core fibers and their applications to photonic components,” in Proceedings of the Ninth Meeting on Lightwave Sensing Technology (Japan Society of Lightwave Sensing Technology and Japan Society of Applied Physics, Japan, 1992), paper LST 9-5 (in Japanese).

Shiraishi, K.

K. Shiraishi, Y. Aizawa, S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8, 1151–1161 (1990).
[CrossRef]

S. Kawakami, K. Shiraishi, Y. Aizawa, “A method to realize fiber-embedded optical devices,” in Proceedings of the Second Conference on Optoelectronics (Institute of Electronics, Information, and Communications Engineers, Japan, 1988), paper 3C2-3.

Stone, J.

J. Stone, L. W. Stulz, D. Marcuse, C. A. Burrus, J. C. Centanni, “Narrow-band FiEnd étalon filters using expanded-core fibers,” J. Lightwave Technol. 10, 1851–1854 (1992).
[CrossRef]

D. Marcuse, J. Stone, “Fiber-coupled short Fabry–Perot resonators,” J. Lightwave Technol. 7, 869–876 (1989).
[CrossRef]

Stulz, L. W.

J. Stone, L. W. Stulz, D. Marcuse, C. A. Burrus, J. C. Centanni, “Narrow-band FiEnd étalon filters using expanded-core fibers,” J. Lightwave Technol. 10, 1851–1854 (1992).
[CrossRef]

Bell Syst. Tech. J.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

Electron. Lett.

H. Hanafusa, M. Horiguchi, J. Noda, “Thermally diffused expanded core fibers for low-loss and inexpensive photonic components,” Electron. Lett. 27, 1968–1969 (1991).
[CrossRef]

C. P. Botham, “Theory of tapered single-mode optical fibers by controlled core diffusion,” Electron. Lett. 24, 243–244 (1988).
[CrossRef]

J. S. Harper, C. P. Botham, S. Hornung, “Tapers in single-mode optical fiber by controlled core diffusion,” Electron. Lett. 24, 245–246 (1988).
[CrossRef]

M. N. Mclandrich, “Core dopant profiles in weakly fused single-mode fibers,” Electron. Lett. 24, 8–9 (1988).
[CrossRef]

J. Lightwave Technol.

K. Shiraishi, Y. Aizawa, S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8, 1151–1161 (1990).
[CrossRef]

J. Stone, L. W. Stulz, D. Marcuse, C. A. Burrus, J. C. Centanni, “Narrow-band FiEnd étalon filters using expanded-core fibers,” J. Lightwave Technol. 10, 1851–1854 (1992).
[CrossRef]

D. Marcuse, J. Stone, “Fiber-coupled short Fabry–Perot resonators,” J. Lightwave Technol. 7, 869–876 (1989).
[CrossRef]

Other

S. Kawakami, K. Shiraishi, Y. Aizawa, “A method to realize fiber-embedded optical devices,” in Proceedings of the Second Conference on Optoelectronics (Institute of Electronics, Information, and Communications Engineers, Japan, 1988), paper 3C2-3.

T. Oguchi, H. Hanafusa, “Thermally diffused expanded core fibers and their applications to photonic components,” in Proceedings of the Ninth Meeting on Lightwave Sensing Technology (Japan Society of Lightwave Sensing Technology and Japan Society of Applied Physics, Japan, 1992), paper LST 9-5 (in Japanese).

O. Hanaizumi, Y. Aizawa, H. Minamide, S. Kawakami, “Fabrication of TEC fiber with MFD 40 μm,” in Proceedings of the 1993 Spring Conference (Institute of Electronics, Information, and Communications Engineers, Japan, 1993), paper C-241 (in Japanese).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Heat-treatment dependence of the outer diameter at the different oxygen flow rates.

Fig. 2
Fig. 2

Dependence of the MFD and the outer diameter on the heat-treatment time.

Fig. 3
Fig. 3

Configuration of the in-line filter.

Fig. 4
Fig. 4

Calculated diffraction loss as a function of the distance between the endfaces of the expanded-core fibers.

Fig. 5
Fig. 5

Dependence of the insertion losses and the backreflections on the tilt angle.

Fig. 6
Fig. 6

Dependence of the insertion losses and the backreflections on the MFD.

Fig. 7
Fig. 7

Transmittance spectrum of the filter element as a function of wavelength.

Fig. 8
Fig. 8

Transmittance spectrum of a typical in-line filter as a function of wavelength.

Fig. 9
Fig. 9

Histogram of the insertion losses.

Fig. 10
Fig. 10

Histogram of the backreflections.

Fig. 11
Fig. 11

Temperature dependence of the in-line filter in transmittance.

Tables (2)

Tables Icon

Table 1 Designed Parameters

Tables Icon

Table 2 Comparison of the Optical Characteristics between the In-line Filter and the Filter Element

Metrics