Abstract

Four types of single-cavity, thin-film, narrow-bandpass filter whose full width at half-maximum ranges from 0.5 to 1.1 nm are produced by ion-assisted deposition of alternating TiO2/SiO2 or Ta2O5/SiO2 layers upon eight substrates having differing coefficients of linear expansion, and the temperature stability of their center wavelengths is examined in the 1540-nm wavelength region. The temperature stability is shown to be greatly dependent on the coefficient of linear expansion of the substrate upon which the filter is deposited. For the eight substrates whose coefficients of linear expansion range from 0 to 142 × 10−7/°C, the temperature stability of the filters ranges from +0.018 to −0.005 nm/°C. Calculations based on a newly developed elastic strain model reveal that the main reason temperature stability of the center wavelengths exhibits substrate dependency is due to a reduction in film packing density brought about by volumetric distortion of the film, which is caused by stress induced from the substrate.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Pulker, “Characterizations of optical thin films,” Appl. Opt. 18, 1969–1977 (1979).
    [CrossRef] [PubMed]
  2. B. Schmitt, J. P. Borgogno, G. Albrand, E. Pelletier, “In situ and air index measurements: influence of the deposition parameters on the shift of TiO2/SiO2 Fabry-Perot filters,” Appl. Opt. 25, 3909–3915 (1986).
    [CrossRef] [PubMed]
  3. A. Brunsting, M. A. Kheiri, D. F. Simonaitis, A. J. Dosmann, “Environmental effects on all-dielectric bandpass filters,” Appl. Opt. 25, 3235–3241 (1986).
    [CrossRef] [PubMed]
  4. S. F. Pellicori, H. L. Heittich, “Reversible spectral shift in coatings,” Appl. Opt. 27, 3061–3062 (1988).
    [CrossRef] [PubMed]
  5. P. J. Martin, H. A. Macleod, R. P. Netterfield, C. G. Pacey, W. G. Sainty, “Ion-beam-assisted deposition of thin films,” Appl. Opt. 22, 178–184 (1983).
    [CrossRef] [PubMed]
  6. A. J. Waldorf, J. A. Dobrowolski, B. T. Sullivan, L. M. Plante, “Optical coatings deposited by reactive ion plating,” Appl. Opt. 32, 5583–5593 (1993).
    [CrossRef] [PubMed]
  7. H. Demiryont, J. R. Sites, K. Geib, “Effects of oxygen content on the properties of tantalum oxide films deposited by ion-beam sputtering,” Appl. Opt. 24, 490–495 (1985).
    [CrossRef] [PubMed]
  8. J. K. Hirvonen, “Ion beam assisted thin film deposition,” Mater. Sci. Rep. 6, 215–274 (1991).
    [CrossRef]
  9. J. Minowa, Y. Fujii, “Subnanometer bandwidth interference filter for optical fiber communication systems,” Appl. Opt. 27, 1385–1386 (1988).
    [CrossRef] [PubMed]
  10. H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Macmillan, New York, 1986), Chap. 9, pp. 405–406.
  11. W. L. Wolfe, ed., Handbook of Optics (McGraw-Hill, New York, 1976), Secs. 7–68–7-135.
  12. J. M. Bennett, E. Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, C. K. Carniglia, R. A. Schmell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther, A. Saker, “Comparison of the properties of titanium dioxide films prepared by various techniques,” Appl. Opt. 28, 3303–3317 (1989).
    [CrossRef] [PubMed]
  13. P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
    [CrossRef]
  14. Ref. 10, Chap. 7, p. 263.
  15. J. R. McNeil, A. C. Barron, S. R. Wilson, W. C. Herrmann, “Ion-assisted deposition of optical thin films: low energy vs high energy bombardment,” Appl. Opt. 23, 552–559 (1984).
    [CrossRef] [PubMed]

1993 (1)

1991 (1)

J. K. Hirvonen, “Ion beam assisted thin film deposition,” Mater. Sci. Rep. 6, 215–274 (1991).
[CrossRef]

1989 (1)

1988 (2)

1986 (2)

1985 (1)

1984 (2)

P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
[CrossRef]

J. R. McNeil, A. C. Barron, S. R. Wilson, W. C. Herrmann, “Ion-assisted deposition of optical thin films: low energy vs high energy bombardment,” Appl. Opt. 23, 552–559 (1984).
[CrossRef] [PubMed]

1983 (1)

1979 (1)

Albrand, G.

Allen, T. H.

Barron, A. C.

Bennett, J. M.

Borgogno, J. P.

Brunsting, A.

Carniglia, C. K.

Demiryont, H.

Dobrowolski, J. A.

Dosmann, A. J.

Fujii, Y.

Geib, K.

Guenther, K. H.

Heittich, H. L.

Herrmann, W. C.

Hirvonen, J. K.

J. K. Hirvonen, “Ion beam assisted thin film deposition,” Mater. Sci. Rep. 6, 215–274 (1991).
[CrossRef]

Kheiri, M. A.

Lazarides, B.

Macleod, H. A.

Martin, P. J.

P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
[CrossRef]

P. J. Martin, H. A. Macleod, R. P. Netterfield, C. G. Pacey, W. G. Sainty, “Ion-beam-assisted deposition of thin films,” Appl. Opt. 22, 178–184 (1983).
[CrossRef] [PubMed]

McNeil, J. R.

Minowa, J.

Netterfield, R. P.

P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
[CrossRef]

P. J. Martin, H. A. Macleod, R. P. Netterfield, C. G. Pacey, W. G. Sainty, “Ion-beam-assisted deposition of thin films,” Appl. Opt. 22, 178–184 (1983).
[CrossRef] [PubMed]

Pacey, C. G.

Pelletier, E.

Pellicori, S. F.

Plante, L. M.

Pulker, H. K.

Sainty, W. G.

P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
[CrossRef]

P. J. Martin, H. A. Macleod, R. P. Netterfield, C. G. Pacey, W. G. Sainty, “Ion-beam-assisted deposition of thin films,” Appl. Opt. 22, 178–184 (1983).
[CrossRef] [PubMed]

Saker, A.

Schmell, R. A.

Schmitt, B.

Simonaitis, D. F.

Sites, J. R.

Sullivan, B. T.

Tuttle-Hart, T.

Waldorf, A. J.

Wilson, S. R.

Appl. Opt. (10)

H. K. Pulker, “Characterizations of optical thin films,” Appl. Opt. 18, 1969–1977 (1979).
[CrossRef] [PubMed]

B. Schmitt, J. P. Borgogno, G. Albrand, E. Pelletier, “In situ and air index measurements: influence of the deposition parameters on the shift of TiO2/SiO2 Fabry-Perot filters,” Appl. Opt. 25, 3909–3915 (1986).
[CrossRef] [PubMed]

A. Brunsting, M. A. Kheiri, D. F. Simonaitis, A. J. Dosmann, “Environmental effects on all-dielectric bandpass filters,” Appl. Opt. 25, 3235–3241 (1986).
[CrossRef] [PubMed]

S. F. Pellicori, H. L. Heittich, “Reversible spectral shift in coatings,” Appl. Opt. 27, 3061–3062 (1988).
[CrossRef] [PubMed]

P. J. Martin, H. A. Macleod, R. P. Netterfield, C. G. Pacey, W. G. Sainty, “Ion-beam-assisted deposition of thin films,” Appl. Opt. 22, 178–184 (1983).
[CrossRef] [PubMed]

A. J. Waldorf, J. A. Dobrowolski, B. T. Sullivan, L. M. Plante, “Optical coatings deposited by reactive ion plating,” Appl. Opt. 32, 5583–5593 (1993).
[CrossRef] [PubMed]

H. Demiryont, J. R. Sites, K. Geib, “Effects of oxygen content on the properties of tantalum oxide films deposited by ion-beam sputtering,” Appl. Opt. 24, 490–495 (1985).
[CrossRef] [PubMed]

J. Minowa, Y. Fujii, “Subnanometer bandwidth interference filter for optical fiber communication systems,” Appl. Opt. 27, 1385–1386 (1988).
[CrossRef] [PubMed]

J. M. Bennett, E. Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, C. K. Carniglia, R. A. Schmell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther, A. Saker, “Comparison of the properties of titanium dioxide films prepared by various techniques,” Appl. Opt. 28, 3303–3317 (1989).
[CrossRef] [PubMed]

J. R. McNeil, A. C. Barron, S. R. Wilson, W. C. Herrmann, “Ion-assisted deposition of optical thin films: low energy vs high energy bombardment,” Appl. Opt. 23, 552–559 (1984).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
[CrossRef]

Mater. Sci. Rep. (1)

J. K. Hirvonen, “Ion beam assisted thin film deposition,” Mater. Sci. Rep. 6, 215–274 (1991).
[CrossRef]

Other (3)

Ref. 10, Chap. 7, p. 263.

H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Macmillan, New York, 1986), Chap. 9, pp. 405–406.

W. L. Wolfe, ed., Handbook of Optics (McGraw-Hill, New York, 1976), Secs. 7–68–7-135.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the relationship between strain and Poisson ratio.

Fig. 2
Fig. 2

Schematic diagram of the coating system. Test samples can be rotated on their central axes and one can monitor film thickness by using a monitor glass upon which thin film is evaporated.

Fig. 3
Fig. 3

Schematic diagram of the measuring system; SMF, single-mode fiber; MMF, multimode fiber; BPF, bandpass filter.

Fig. 4
Fig. 4

Calculated TSCW (CLES) values for three δ’s (1.25 × 10−5/°C, 1 × 10−5/°C, and 0.75 − 10−5/°C). The other parameters, β, P0, s, and N0, are 5.5 × 10−7/°C, 1.0, 0.08, and 1.70, respectively.

Fig. 5
Fig. 5

Calculated TSCW (CLES) values for four b’s (1 × 10−7/°C, 5 × 10−7/°C, 1 × 10−6/°C, and 2 × 10−6/°C). The other parameters, P0, s, N0, and δ, are 1.0, 0.08, 1.70, and 0.88 × 10−5/°C, respectively.

Fig. 6
Fig. 6

Calculated TSCW (CLES) values for three Poisson ratios (0, 0.1, and 0.2). The other parameters, β, P0, N0, and δ, are 5.5 × 10−7/°C, 1.0, 1.70, and 0.88 × 10−5/°C, respectively.

Fig. 7
Fig. 7

Calculated TSCW (CLES) values for three P0’s (1.0, 0.9, and 0.8). The other parameters, N0, s, δ, and β, are 1.70, 0.08, 0.88 × 10−5/°C, and 5.5 × 10−7/°C, respectively.

Fig. 8
Fig. 8

Calculated TSCW (CLES) values for three N0’s (1.6, 1.7, and 1.8). The other parameters, P0, β, s, and δ are 1.0, 5.5 × 10−7/°C, 0.08, and 0.88 × 10−5/°C, respectively.

Fig. 9
Fig. 9

X-ray diffraction spectrum of (a) BPF 1 (TiO2/SiO2) and (b) BPF 3 (Ta2O5/SiO2).

Fig. 10
Fig. 10

Raman spectrum of (a) BPF 1 and (b) BPF 3. The light that was used as a probe light was 488 nm in both (a) and (b).

Fig. 11
Fig. 11

Measured TSCW values of BPF’s 1–4 deposited upon eight kinds of substrate with differing CLE.

Fig. 12
Fig. 12

Center wavelengths of eight BPF 1’s measured at room temperature. This filter was deposited upon eight substrates with differing CLE.

Tables (5)

Tables Icon

Table 1 TCRI Values Including Their CLE and Poisson Ratio

Tables Icon

Table 2 Design of Four Types of NBPF

Tables Icon

Table 3 Details of the Four Types of NBPF

Tables Icon

Table 4 Names and Characteristics of Eight Kinds of Glass Substrate

Tables Icon

Table 5 Measured TSCW for Eight Kinds of Substrate a

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

n 0 = N 0 P 0 + 1 P 0 ,
P 0 = V / V 0 = V / L 0 3 ,
N 0 = n L [ 1 ( n L / n H ) + ( n L / n H ) 2 ] 1 / 2 ,
N 0 = ( n H / n L ) 1 / 2 ,
d 0 = d H + d L ,
L x = L 0 ( 1 + t x x / E ) ( 1 s t y y / E ) ,
L y = L 0 ( 1 + t y y / E ) ( 1 s t x x / E ) ,
L z = L 0 ( 1 s t x x / E ) ( 1 s t y y / E ) .
L x = L y = L 0 [ 1 + t ( 1 s ) / E ] ,
L z = L 0 ( 1 2 s t / E ) .
t ( 1 s ) / E = ( α β ) ( T T 0 ) ,
V T = L x L y L x = V 0 [ 1 + 2 ( α β ) ( 1 2 s ) / ( 1 s ) ] .
V T = V 0 [ 1 + 2 ( α β ) ( 1 2 s ) / ( 1 s ) + 3 β ) ] .
P T = P 0 ( 1 + 3 β ) / ( 1 + 3 β + A ) ;
d T = d 0 ( 1 B + β ) ;
δ = ( d N / d T ) / N ,
δ = ( a δ L + b δ H ) / ( a + b ) ,
n T = N T P T + 1 P T = P 0 ( N 0 + N 0 δ ) ( 1 + 3 β ) / ( 1 + 3 β + A ) + 1 P 0 ( 1 + 3 β ) / ( 1 + 3 β + A ) .
TSCW ( CLES ) = λ Δ ( n d ) / n 0 d 0 = λ ( n T d T / n 0 d 0 1 ) .

Metrics