Abstract

The polarization and transmission characteristics of freestanding gold transmission gratings, with 200-nm periods, for extreme-ultraviolet (EUV) radiation (l < 200 nm) have been measured. We find that EUV transmission through the gratings is dominated by the waveguide characteristics of the gratings and that polarization efficiencies of 90% for wavelengths of 121.6 nm are achievable. Both the EUV polarization and transmission properties are in good agreement with a complete vector, numerical solution of Maxwell’s equations. The fraction of open area to total area of the grating has been measured using a 10-keV proton beam and was found to be in good agreement with the microscopic slit and wire dimensions that were obtained by scanning electron microscopy. The use of these gratings for particle measurements in the presence of intense EUV radiation is briefly discussed.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Schattenburg, E. H. Anderson, H. I. Smith, “X-ray/VUV transmission gratings for astrophysical and laboratory applications,” Phys. Scr. 41, 13–20 (1990).
    [CrossRef]
  2. H. Lochbihler, P. Predehl, “Characterization of x-ray transmission gratings,” Appl. Opt. 31, 964–971 (1992).
    [CrossRef] [PubMed]
  3. H. W. Ogawa, D. R. McMullin, D. L. Judge, R. Korde, “Normal incidence spectrophotometer with high-density transmission grating technology and high-efficiency silicon photodiodes for absolute solar extreme-ultraviolet irradiance measurements,” Opt. Eng. 32, 3121–3125 (1993).
    [CrossRef]
  4. P. J. Caldwell, E. T. Arakawa, T. A. Callcott, “Extreme ultraviolet transmission grating monochromator,” Appl. Opt. 20, 3047–3050 (1981).
    [CrossRef] [PubMed]
  5. M. A. Gruntman, Submicron structures: promising filters in EUV—a review,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy, R. E. Rothschild, O. H. Siegmund, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 385–394 (1991).
  6. G. J. Sonek, D. K. Wagner, J. M. Ballantyne, “Ultraviolet grating polarizers,” J. Vac. Sci. Technol. 19, 921–923 (1981).
    [CrossRef]
  7. D. W. Keith, M. L. Schattenburg, H. I. Smith, D. E. Pritchard, “Diffraction of atoms by a transmission grating,” Phys. Rev. Lett. 61, 1580–1583 (1988).
    [CrossRef] [PubMed]
  8. D. W. Keith, C. R. Ekstrom, Q. A. Turchette, D. E. Pritchard, “An interferometer for atoms,” Phys. Rev. Lett. 66, 2693–2696 (1991).
    [CrossRef] [PubMed]
  9. D. J. McComas, B. L. Barraclough, R. C. Elphic, H. O. Funsten, M. F. Thomsen, “Magnetospheric imaging with low energy neutral atoms,” Proc. Natl. Acad. Sci. USA 88, 9598–9602 (1991).
    [CrossRef] [PubMed]
  10. M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-Ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
    [CrossRef]
  11. J. P. Auton, “Infrared transmission polarizers by photolithography,” Appl. Opt. 6, 1023–1027 (1967).
    [CrossRef] [PubMed]
  12. Y. S. Hwang, H. K. Park, “Polarization characteristics of wire mesh at 119 μm,” Appl. Opt. 28, 4999–5001 (1989).
    [CrossRef] [PubMed]
  13. J. P. Casey, E. A. Lewis, “Interferometer action of a parallel pair of wire gratings,” J. Opt. Soc. Am. 42, 971–977 (1952).
    [CrossRef]
  14. W. V. Ignatowsky, “Zur Theorie der Gitter,” Ann. Phys. 44, 369–437 (1914).
    [CrossRef]
  15. E. A. Lewis, J. P. Casey “Electromagnetic reflection and transmission by gratings of resistive wires,” J. Appl. Phys. 23, 605–608 (1952).
    [CrossRef]
  16. G. R. Bird, M. Parrish, “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50, 886–891 (1960).
    [CrossRef]
  17. R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
    [CrossRef]
  18. E. H. Anderson, “Fabrication and electromagnetic applications of periodic nanostructures,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1988).
  19. R. Magnusson, T. K. Gaylord, “Equivalence of multiwave coupled-wave theory and modal theory for periodic media diffraction,” J. Opt. Soc. Am. 68, 1777–1779 (1978).
    [CrossRef]
  20. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), p. 348.
  21. N. M. Ceglio, A. M. Hawryluk, D. G. Stearns, “Demonstration of guided-wave phenomena at extreme-ultraviolet and soft-x-ray wavelengths,” Opt. Lett. 13, 267–269 (1988).
    [CrossRef] [PubMed]
  22. R. I. Sarbacher, W. A. Edson, Hyper and Ultrahigh Frequency Engineering (Wiley, New York, 1944), p. 174.
  23. N. Marcuvitz, Waveguide Handbook (McGraw-Hill, New York, 1951), pp. 62–65.
  24. D. E. Gray, ed., American Institue of Physics Handbook (McGraw-Hill, New York, 1972), pp. 6–118.
  25. W. C. Preidohorsky, J. J. Bloch, B. C. Edwards, D. C. Roussel-Dupré, B. W. Smith, O. H. W. Siegmund, “ALEXIS experiment and small satellite: initial on-orbit results,” in EUV, X-Ray and Gamma-Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 114–126 (1993).
  26. F. Paresce, “Quantum efficiency of a channel electron multiplier in the far ultraviolet, Appl. Opt. 14, 2823–2824 (1975).
    [CrossRef] [PubMed]
  27. T. Sakuri, T. Hashizume, “Determination of the detection efficiency of a channel plate electron multiplier,” Rev. Sci. Instrum. 57, 237–239 (1985).

1993 (1)

H. W. Ogawa, D. R. McMullin, D. L. Judge, R. Korde, “Normal incidence spectrophotometer with high-density transmission grating technology and high-efficiency silicon photodiodes for absolute solar extreme-ultraviolet irradiance measurements,” Opt. Eng. 32, 3121–3125 (1993).
[CrossRef]

1992 (1)

1991 (3)

D. W. Keith, C. R. Ekstrom, Q. A. Turchette, D. E. Pritchard, “An interferometer for atoms,” Phys. Rev. Lett. 66, 2693–2696 (1991).
[CrossRef] [PubMed]

D. J. McComas, B. L. Barraclough, R. C. Elphic, H. O. Funsten, M. F. Thomsen, “Magnetospheric imaging with low energy neutral atoms,” Proc. Natl. Acad. Sci. USA 88, 9598–9602 (1991).
[CrossRef] [PubMed]

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-Ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

1990 (1)

M. L. Schattenburg, E. H. Anderson, H. I. Smith, “X-ray/VUV transmission gratings for astrophysical and laboratory applications,” Phys. Scr. 41, 13–20 (1990).
[CrossRef]

1989 (1)

1988 (2)

D. W. Keith, M. L. Schattenburg, H. I. Smith, D. E. Pritchard, “Diffraction of atoms by a transmission grating,” Phys. Rev. Lett. 61, 1580–1583 (1988).
[CrossRef] [PubMed]

N. M. Ceglio, A. M. Hawryluk, D. G. Stearns, “Demonstration of guided-wave phenomena at extreme-ultraviolet and soft-x-ray wavelengths,” Opt. Lett. 13, 267–269 (1988).
[CrossRef] [PubMed]

1985 (1)

T. Sakuri, T. Hashizume, “Determination of the detection efficiency of a channel plate electron multiplier,” Rev. Sci. Instrum. 57, 237–239 (1985).

1981 (2)

P. J. Caldwell, E. T. Arakawa, T. A. Callcott, “Extreme ultraviolet transmission grating monochromator,” Appl. Opt. 20, 3047–3050 (1981).
[CrossRef] [PubMed]

G. J. Sonek, D. K. Wagner, J. M. Ballantyne, “Ultraviolet grating polarizers,” J. Vac. Sci. Technol. 19, 921–923 (1981).
[CrossRef]

1978 (1)

1975 (1)

1967 (1)

1960 (1)

1952 (2)

E. A. Lewis, J. P. Casey “Electromagnetic reflection and transmission by gratings of resistive wires,” J. Appl. Phys. 23, 605–608 (1952).
[CrossRef]

J. P. Casey, E. A. Lewis, “Interferometer action of a parallel pair of wire gratings,” J. Opt. Soc. Am. 42, 971–977 (1952).
[CrossRef]

1914 (1)

W. V. Ignatowsky, “Zur Theorie der Gitter,” Ann. Phys. 44, 369–437 (1914).
[CrossRef]

Anderson, E. H.

M. L. Schattenburg, E. H. Anderson, H. I. Smith, “X-ray/VUV transmission gratings for astrophysical and laboratory applications,” Phys. Scr. 41, 13–20 (1990).
[CrossRef]

E. H. Anderson, “Fabrication and electromagnetic applications of periodic nanostructures,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1988).

Arakawa, E. T.

Auton, J. P.

Ballantyne, J. M.

G. J. Sonek, D. K. Wagner, J. M. Ballantyne, “Ultraviolet grating polarizers,” J. Vac. Sci. Technol. 19, 921–923 (1981).
[CrossRef]

Barraclough, B. L.

D. J. McComas, B. L. Barraclough, R. C. Elphic, H. O. Funsten, M. F. Thomsen, “Magnetospheric imaging with low energy neutral atoms,” Proc. Natl. Acad. Sci. USA 88, 9598–9602 (1991).
[CrossRef] [PubMed]

Bird, G. R.

Bloch, J. J.

W. C. Preidohorsky, J. J. Bloch, B. C. Edwards, D. C. Roussel-Dupré, B. W. Smith, O. H. W. Siegmund, “ALEXIS experiment and small satellite: initial on-orbit results,” in EUV, X-Ray and Gamma-Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 114–126 (1993).

Caldwell, P. J.

Callcott, T. A.

Canizares, C. R.

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-Ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Casey, J. P.

E. A. Lewis, J. P. Casey “Electromagnetic reflection and transmission by gratings of resistive wires,” J. Appl. Phys. 23, 605–608 (1952).
[CrossRef]

J. P. Casey, E. A. Lewis, “Interferometer action of a parallel pair of wire gratings,” J. Opt. Soc. Am. 42, 971–977 (1952).
[CrossRef]

Ceglio, N. M.

Dewey, D.

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-Ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Edson, W. A.

R. I. Sarbacher, W. A. Edson, Hyper and Ultrahigh Frequency Engineering (Wiley, New York, 1944), p. 174.

Edwards, B. C.

W. C. Preidohorsky, J. J. Bloch, B. C. Edwards, D. C. Roussel-Dupré, B. W. Smith, O. H. W. Siegmund, “ALEXIS experiment and small satellite: initial on-orbit results,” in EUV, X-Ray and Gamma-Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 114–126 (1993).

Ekstrom, C. R.

D. W. Keith, C. R. Ekstrom, Q. A. Turchette, D. E. Pritchard, “An interferometer for atoms,” Phys. Rev. Lett. 66, 2693–2696 (1991).
[CrossRef] [PubMed]

Elphic, R. C.

D. J. McComas, B. L. Barraclough, R. C. Elphic, H. O. Funsten, M. F. Thomsen, “Magnetospheric imaging with low energy neutral atoms,” Proc. Natl. Acad. Sci. USA 88, 9598–9602 (1991).
[CrossRef] [PubMed]

Flanagan, K. A.

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-Ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Funsten, H. O.

D. J. McComas, B. L. Barraclough, R. C. Elphic, H. O. Funsten, M. F. Thomsen, “Magnetospheric imaging with low energy neutral atoms,” Proc. Natl. Acad. Sci. USA 88, 9598–9602 (1991).
[CrossRef] [PubMed]

Gaylord, T. K.

Gruntman, M. A.

M. A. Gruntman, Submicron structures: promising filters in EUV—a review,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy, R. E. Rothschild, O. H. Siegmund, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 385–394 (1991).

Hamnett, M.

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-Ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Hashizume, T.

T. Sakuri, T. Hashizume, “Determination of the detection efficiency of a channel plate electron multiplier,” Rev. Sci. Instrum. 57, 237–239 (1985).

Hawryluk, A. M.

Hwang, Y. S.

Ignatowsky, W. V.

W. V. Ignatowsky, “Zur Theorie der Gitter,” Ann. Phys. 44, 369–437 (1914).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), p. 348.

Judge, D. L.

H. W. Ogawa, D. R. McMullin, D. L. Judge, R. Korde, “Normal incidence spectrophotometer with high-density transmission grating technology and high-efficiency silicon photodiodes for absolute solar extreme-ultraviolet irradiance measurements,” Opt. Eng. 32, 3121–3125 (1993).
[CrossRef]

Keith, D. W.

D. W. Keith, C. R. Ekstrom, Q. A. Turchette, D. E. Pritchard, “An interferometer for atoms,” Phys. Rev. Lett. 66, 2693–2696 (1991).
[CrossRef] [PubMed]

D. W. Keith, M. L. Schattenburg, H. I. Smith, D. E. Pritchard, “Diffraction of atoms by a transmission grating,” Phys. Rev. Lett. 61, 1580–1583 (1988).
[CrossRef] [PubMed]

Korde, R.

H. W. Ogawa, D. R. McMullin, D. L. Judge, R. Korde, “Normal incidence spectrophotometer with high-density transmission grating technology and high-efficiency silicon photodiodes for absolute solar extreme-ultraviolet irradiance measurements,” Opt. Eng. 32, 3121–3125 (1993).
[CrossRef]

Levine, A. M.

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-Ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Lewis, E. A.

E. A. Lewis, J. P. Casey “Electromagnetic reflection and transmission by gratings of resistive wires,” J. Appl. Phys. 23, 605–608 (1952).
[CrossRef]

J. P. Casey, E. A. Lewis, “Interferometer action of a parallel pair of wire gratings,” J. Opt. Soc. Am. 42, 971–977 (1952).
[CrossRef]

Lochbihler, H.

Lum, K. S. K.

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-Ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Magnusson, R.

Manikkalingam, R.

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-Ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Marcuvitz, N.

N. Marcuvitz, Waveguide Handbook (McGraw-Hill, New York, 1951), pp. 62–65.

Markert, T. H.

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-Ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

McComas, D. J.

D. J. McComas, B. L. Barraclough, R. C. Elphic, H. O. Funsten, M. F. Thomsen, “Magnetospheric imaging with low energy neutral atoms,” Proc. Natl. Acad. Sci. USA 88, 9598–9602 (1991).
[CrossRef] [PubMed]

McMullin, D. R.

H. W. Ogawa, D. R. McMullin, D. L. Judge, R. Korde, “Normal incidence spectrophotometer with high-density transmission grating technology and high-efficiency silicon photodiodes for absolute solar extreme-ultraviolet irradiance measurements,” Opt. Eng. 32, 3121–3125 (1993).
[CrossRef]

Ogawa, H. W.

H. W. Ogawa, D. R. McMullin, D. L. Judge, R. Korde, “Normal incidence spectrophotometer with high-density transmission grating technology and high-efficiency silicon photodiodes for absolute solar extreme-ultraviolet irradiance measurements,” Opt. Eng. 32, 3121–3125 (1993).
[CrossRef]

Paresce, F.

Park, H. K.

Parrish, M.

Petit, R.

R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
[CrossRef]

Predehl, P.

Preidohorsky, W. C.

W. C. Preidohorsky, J. J. Bloch, B. C. Edwards, D. C. Roussel-Dupré, B. W. Smith, O. H. W. Siegmund, “ALEXIS experiment and small satellite: initial on-orbit results,” in EUV, X-Ray and Gamma-Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 114–126 (1993).

Pritchard, D. E.

D. W. Keith, C. R. Ekstrom, Q. A. Turchette, D. E. Pritchard, “An interferometer for atoms,” Phys. Rev. Lett. 66, 2693–2696 (1991).
[CrossRef] [PubMed]

D. W. Keith, M. L. Schattenburg, H. I. Smith, D. E. Pritchard, “Diffraction of atoms by a transmission grating,” Phys. Rev. Lett. 61, 1580–1583 (1988).
[CrossRef] [PubMed]

Roussel-Dupré, D. C.

W. C. Preidohorsky, J. J. Bloch, B. C. Edwards, D. C. Roussel-Dupré, B. W. Smith, O. H. W. Siegmund, “ALEXIS experiment and small satellite: initial on-orbit results,” in EUV, X-Ray and Gamma-Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 114–126 (1993).

Sakuri, T.

T. Sakuri, T. Hashizume, “Determination of the detection efficiency of a channel plate electron multiplier,” Rev. Sci. Instrum. 57, 237–239 (1985).

Sarbacher, R. I.

R. I. Sarbacher, W. A. Edson, Hyper and Ultrahigh Frequency Engineering (Wiley, New York, 1944), p. 174.

Schattenburg, M. L.

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-Ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

M. L. Schattenburg, E. H. Anderson, H. I. Smith, “X-ray/VUV transmission gratings for astrophysical and laboratory applications,” Phys. Scr. 41, 13–20 (1990).
[CrossRef]

D. W. Keith, M. L. Schattenburg, H. I. Smith, D. E. Pritchard, “Diffraction of atoms by a transmission grating,” Phys. Rev. Lett. 61, 1580–1583 (1988).
[CrossRef] [PubMed]

Siegmund, O. H. W.

W. C. Preidohorsky, J. J. Bloch, B. C. Edwards, D. C. Roussel-Dupré, B. W. Smith, O. H. W. Siegmund, “ALEXIS experiment and small satellite: initial on-orbit results,” in EUV, X-Ray and Gamma-Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 114–126 (1993).

Smith, B. W.

W. C. Preidohorsky, J. J. Bloch, B. C. Edwards, D. C. Roussel-Dupré, B. W. Smith, O. H. W. Siegmund, “ALEXIS experiment and small satellite: initial on-orbit results,” in EUV, X-Ray and Gamma-Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 114–126 (1993).

Smith, H. I.

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-Ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

M. L. Schattenburg, E. H. Anderson, H. I. Smith, “X-ray/VUV transmission gratings for astrophysical and laboratory applications,” Phys. Scr. 41, 13–20 (1990).
[CrossRef]

D. W. Keith, M. L. Schattenburg, H. I. Smith, D. E. Pritchard, “Diffraction of atoms by a transmission grating,” Phys. Rev. Lett. 61, 1580–1583 (1988).
[CrossRef] [PubMed]

Sonek, G. J.

G. J. Sonek, D. K. Wagner, J. M. Ballantyne, “Ultraviolet grating polarizers,” J. Vac. Sci. Technol. 19, 921–923 (1981).
[CrossRef]

Stearns, D. G.

Thomsen, M. F.

D. J. McComas, B. L. Barraclough, R. C. Elphic, H. O. Funsten, M. F. Thomsen, “Magnetospheric imaging with low energy neutral atoms,” Proc. Natl. Acad. Sci. USA 88, 9598–9602 (1991).
[CrossRef] [PubMed]

Turchette, Q. A.

D. W. Keith, C. R. Ekstrom, Q. A. Turchette, D. E. Pritchard, “An interferometer for atoms,” Phys. Rev. Lett. 66, 2693–2696 (1991).
[CrossRef] [PubMed]

Wagner, D. K.

G. J. Sonek, D. K. Wagner, J. M. Ballantyne, “Ultraviolet grating polarizers,” J. Vac. Sci. Technol. 19, 921–923 (1981).
[CrossRef]

Ann. Phys. (1)

W. V. Ignatowsky, “Zur Theorie der Gitter,” Ann. Phys. 44, 369–437 (1914).
[CrossRef]

Appl. Opt. (5)

J. Appl. Phys. (1)

E. A. Lewis, J. P. Casey “Electromagnetic reflection and transmission by gratings of resistive wires,” J. Appl. Phys. 23, 605–608 (1952).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Vac. Sci. Technol. (1)

G. J. Sonek, D. K. Wagner, J. M. Ballantyne, “Ultraviolet grating polarizers,” J. Vac. Sci. Technol. 19, 921–923 (1981).
[CrossRef]

Opt. Eng. (2)

H. W. Ogawa, D. R. McMullin, D. L. Judge, R. Korde, “Normal incidence spectrophotometer with high-density transmission grating technology and high-efficiency silicon photodiodes for absolute solar extreme-ultraviolet irradiance measurements,” Opt. Eng. 32, 3121–3125 (1993).
[CrossRef]

M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, H. I. Smith, “Transmission grating spectroscopy and the Advanced X-Ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (2)

D. W. Keith, M. L. Schattenburg, H. I. Smith, D. E. Pritchard, “Diffraction of atoms by a transmission grating,” Phys. Rev. Lett. 61, 1580–1583 (1988).
[CrossRef] [PubMed]

D. W. Keith, C. R. Ekstrom, Q. A. Turchette, D. E. Pritchard, “An interferometer for atoms,” Phys. Rev. Lett. 66, 2693–2696 (1991).
[CrossRef] [PubMed]

Phys. Scr. (1)

M. L. Schattenburg, E. H. Anderson, H. I. Smith, “X-ray/VUV transmission gratings for astrophysical and laboratory applications,” Phys. Scr. 41, 13–20 (1990).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

D. J. McComas, B. L. Barraclough, R. C. Elphic, H. O. Funsten, M. F. Thomsen, “Magnetospheric imaging with low energy neutral atoms,” Proc. Natl. Acad. Sci. USA 88, 9598–9602 (1991).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

T. Sakuri, T. Hashizume, “Determination of the detection efficiency of a channel plate electron multiplier,” Rev. Sci. Instrum. 57, 237–239 (1985).

Other (8)

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), p. 348.

R. I. Sarbacher, W. A. Edson, Hyper and Ultrahigh Frequency Engineering (Wiley, New York, 1944), p. 174.

N. Marcuvitz, Waveguide Handbook (McGraw-Hill, New York, 1951), pp. 62–65.

D. E. Gray, ed., American Institue of Physics Handbook (McGraw-Hill, New York, 1972), pp. 6–118.

W. C. Preidohorsky, J. J. Bloch, B. C. Edwards, D. C. Roussel-Dupré, B. W. Smith, O. H. W. Siegmund, “ALEXIS experiment and small satellite: initial on-orbit results,” in EUV, X-Ray and Gamma-Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 114–126 (1993).

M. A. Gruntman, Submicron structures: promising filters in EUV—a review,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy, R. E. Rothschild, O. H. Siegmund, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 385–394 (1991).

R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
[CrossRef]

E. H. Anderson, “Fabrication and electromagnetic applications of periodic nanostructures,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Operational schematic of a neutral atom detector based on a filter that rejects EUV light while letting atoms pass through.

Fig. 2
Fig. 2

(a) Schematic of the freestanding gold grating structure. (b) Grating viewed through a 4-μm period support structure with a SEM. (c) Enlarged view of a 200-nm period grating.

Fig. 3
Fig. 3

Schematic of the proton illumination apparatus.

Fig. 4
Fig. 4

10-keV proton-illuminated image of the transmission grating showing, before the improvements in the manufacturing process, extremely poor and nonuniform transmission. Image has been artificially smoothed to enhance contrast and compensate for poor signal-to-noise levels.

Fig. 5
Fig. 5

10-keV proton-illuminated image of the transmission grating, after the improvements in the manufacturing process, showing a small occlusion with uniform transmission elsewhere.

Fig. 6
Fig. 6

Proton transmission for a narrow, shorter dimension cut through the grating image of Fig. 5.

Fig. 7
Fig. 7

TE and TEM transmission through a 200-nm period gold grating (66.6-nm slits and 133.3-nm bars) as a function of grating thickness at a wavelength of 121.6 nm.

Fig. 8
Fig. 8

Predicted TE and TEM transmissions through a 450-nm-thick gold grating from the simulation for a fixed wavelength of 121.6 nm as a function of period (curves) as well as the transmissions based on Eqs. (1) and (2) (diamonds). Bar widths of 133.3 nm and slit widths of 66.6 nm were used in both cases. The vertical arrow marks the period of gratings used in this study.

Fig. 9
Fig. 9

Experimentally determined EUV transmission for two different gratings as a function of wavelength (circles) and the predicted transmissions from the simulation (solid curve).

Fig. 10
Fig. 10

EUV transmission (predominately λ ≈ 121.6 nm) versus angle between two gratings: data (circles), modified Malus law, Eq. (6) (curve).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

α TEM = R / b ξ ,
α TE = ( 2 R / b ξ ) ( λ / 2 b ) 2 [ 1 ( λ / 2 b ) 2 ] 1 / 2 ,
I = I + I = T 2 + T 2 ,
I = A 2 I + B 2 I ,
I ( θ ) = cos 2 θ ( A 2 T a 2 T b 2 + B 2 T a 2 T b 2 ) + sin 2 θ ( A 2 T a 2 T b 2 + B 2 T a 2 T b 2 ) ,
I ( θ ) = I ( 0 ° ) cos 2 θ + I ( 90 ° ) sin 2 θ ,
I ( 0 ° ) I ( 90 ° ) I ( 0 ° ) + I ( 90 ° ) = χ a χ b ,

Metrics