Abstract

A technique for gas analysis based on pulsed-laser-induced photoacoustic spectroscopy in the UV and the visible is presented. The laser-based technique and the associated analysis probe have been developed for the analysis of pollutant chemistry in fluidized beds and other combustion environments with limited or no optical access. The photoacoustic-absorption spectrum of the analyzed gas is measured in a test cell located at the end of a tubular probe. This test cell is subject to the prevailing temperature and pressure in the combustion process. The instrument response has been calibrated for N2O, NO, NO2, NH3, SO2, and H2S at atmospheric pressure between 20 and 910 °C. The response of the probe was found to increase with pressure for N2O, NO, NH3, and NO2 up to 1.2 MPa pressure. The method and the probe have been used for detection and ranging of gas concentrations in a premixed methane flame. Some preliminary tests in a large 12-MW circulating bed boiler have also been done.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Kramlich, J. A. Cole, J. M. McCarthy, S. W. Lanier, J. A. McSorley, “Mechanisms of nitrous oxide formation in coal flames,” Combust. Flame 77, 375–384 (1989).
    [CrossRef]
  2. P. Kilpinen, M. Hupa, “Homogeneous N2O chemistry at fluidized bed combustion conditions: a kinetic modeling study,” Combust. Flame 85, 94–104 (1991).
    [CrossRef]
  3. K. Iisa, P. Salokoski, M. Hupa, “Heterogeneous formation and destruction of nitrous oxide under fluidized bed combustion conditions,” in Eleventh International Conference on Fluidized Bed Combustion (American Society of Mechanical Engineers, New York, 1991), pp. 1027–1033.
  4. L-E. Åmand, B. Leckner, “Influence of fuel on the emission of nitrogen oxides (NO and N2O) from an 8-MW fluidized bed boiler,” Combust. Flame 84, 181–196 (1991).
    [CrossRef]
  5. M. J. Aho, J. P. Hämäläinen, J. L. Tummavuori, “Importance of solid fuel properties to nitrogen oxide formation through HCN and NH3 in small particle combustion,” Combust. Flame 95, 22–30 (1993).
    [CrossRef]
  6. R. K. Lyon, J. A. Cole, “Kinetic modeling of artifacts in the measurement of N2O from combustion sources,” Combust. Flame 77, 139–143 (1989).
    [CrossRef]
  7. G. P. Smith, M. J. Dyer, D. R. Crosley, “Pulsed laser optoacoustic detection of flame species,” Appl. Opt. 22, 3995–4003 (1983).
    [CrossRef] [PubMed]
  8. P. V. Cvijin, D. A. Gilmore, G. H. Atkinson, “Determination of gaseous formic acid and acetic acid by pulsed ultraviolet photoacoustic spectroscopy,” Appl. Spectrosc. 42, 770–774 (1988).
    [CrossRef]
  9. A. Rose, G. J. Salamo, R. Gupta, “Photoacoustic deflection spectroscopy: a new species-specific method for combustion diagnostics,” Appl. Opt. 23, 781–784 (1984).
    [CrossRef] [PubMed]
  10. A. Rose, R. Vyas, R. Gupta, “Pulsed photothermal deflection spectroscopy in a flowing medium: a quantitative investigation,” Appl. Opt. 25, 4626–4643 (1986).
    [CrossRef] [PubMed]
  11. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988), pp. 304–319.
  12. V. P. Zharov, V. P. Letokhov, Laser Optoacoustic Spectroscopy (Springer-Verlag, Heidelberg, Germany, 1986), pp. 16–44.
  13. P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A 2∑+,” Appl. Phys. B 57, 249–259 (1993).
    [CrossRef]
  14. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 74th ed. (CRC, Boca Raton, Fla., 1993), pp. 5–48.
  15. J. Vandooren, M. C. Branch, P. J. van Tiggelen, “Comparisons of the structure of stoichiometric CH4–N2O–Ar and CH4–O2–Ar flames by molecular beam sampling and mass spectrometric analysis,” Combust. Flame 90, 247–258 (1992).
    [CrossRef]
  16. B. Yavorsky, A. Detlaf, Handbook of Physics (Mir, Moscow, 1980), p. 678.
  17. J. Toivanen, Teknillinen Akustiikka (Otakustantamo, Espoo, Finland, 1981), p. 137 (in Finnish).
  18. H. Edner, A. Sunesson, S. Svanberg, “NO plume mapping by laser-radar techniques,” Opt. Lett. 13, 704–706 (1988).
    [CrossRef] [PubMed]
  19. R. M. Leo, H. L. Hawkins, P. John, R. G. Harrison, “Absorption measurements by pulsed optoacoustic detection,” J. Phys. E 13, 658–660 (1980).
    [CrossRef]
  20. J. S. M. Botterill, “Fluidized bed behaviour,” in Fluidized Beds: Combustion and Applications, J. R. Howard, ed. (Applied Science, London, 1983), p. 1–36.
  21. F. I. Dalidchik, I. S. Zaslonko, L. A. Marnacheva, Y. K. Mukoseev, “UF-absorptionnaja spektroskopiya molekuljarnykh “gorjachikh” polos (UV-absorption spectroscopy of molecular ‘hot’ bands),” Khim. Fiz. 7, 944–955 (1987).
  22. T. M. Quagliaroli, G. Laufer, J. C. McDaniel, “Calibration of OH laser-induced fluorescence temperature measurements using thermally dissociated H2O,” Appl. Phys. B 59, 635–638 (1994).
    [CrossRef]
  23. J. H. Grinstead, G. Laufer, R. H. Krauss, J. C. McDaniel, “Calibration source for OH laser-induced fluorescence-density measurements with thermally dissociated H2O in atmospheric air,” Appl. Opt. 33, 1115–1119 (1994).
    [CrossRef] [PubMed]
  24. J. Stenberg, R. Hernberg, “Laser photoacoustic probe for in-situ gas analysis in fluidized bed reactors,” in Proceedings of the Joint Meeting of the British and German Sections (Combustion Institute, Cambridge, Mass., 1993), pp. 259–262.
  25. K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 209–279 (1994).
    [CrossRef]
  26. J. Brassington, “Photo-acoustic detection and ranging—a new technique for the remote detection of gases,” J. Phys. D 15, 219–228 (1982).
    [CrossRef]

1994

T. M. Quagliaroli, G. Laufer, J. C. McDaniel, “Calibration of OH laser-induced fluorescence temperature measurements using thermally dissociated H2O,” Appl. Phys. B 59, 635–638 (1994).
[CrossRef]

J. H. Grinstead, G. Laufer, R. H. Krauss, J. C. McDaniel, “Calibration source for OH laser-induced fluorescence-density measurements with thermally dissociated H2O in atmospheric air,” Appl. Opt. 33, 1115–1119 (1994).
[CrossRef] [PubMed]

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 209–279 (1994).
[CrossRef]

1993

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A 2∑+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

M. J. Aho, J. P. Hämäläinen, J. L. Tummavuori, “Importance of solid fuel properties to nitrogen oxide formation through HCN and NH3 in small particle combustion,” Combust. Flame 95, 22–30 (1993).
[CrossRef]

1992

J. Vandooren, M. C. Branch, P. J. van Tiggelen, “Comparisons of the structure of stoichiometric CH4–N2O–Ar and CH4–O2–Ar flames by molecular beam sampling and mass spectrometric analysis,” Combust. Flame 90, 247–258 (1992).
[CrossRef]

1991

P. Kilpinen, M. Hupa, “Homogeneous N2O chemistry at fluidized bed combustion conditions: a kinetic modeling study,” Combust. Flame 85, 94–104 (1991).
[CrossRef]

L-E. Åmand, B. Leckner, “Influence of fuel on the emission of nitrogen oxides (NO and N2O) from an 8-MW fluidized bed boiler,” Combust. Flame 84, 181–196 (1991).
[CrossRef]

1989

R. K. Lyon, J. A. Cole, “Kinetic modeling of artifacts in the measurement of N2O from combustion sources,” Combust. Flame 77, 139–143 (1989).
[CrossRef]

J. C. Kramlich, J. A. Cole, J. M. McCarthy, S. W. Lanier, J. A. McSorley, “Mechanisms of nitrous oxide formation in coal flames,” Combust. Flame 77, 375–384 (1989).
[CrossRef]

1988

1987

F. I. Dalidchik, I. S. Zaslonko, L. A. Marnacheva, Y. K. Mukoseev, “UF-absorptionnaja spektroskopiya molekuljarnykh “gorjachikh” polos (UV-absorption spectroscopy of molecular ‘hot’ bands),” Khim. Fiz. 7, 944–955 (1987).

1986

1984

1983

1982

J. Brassington, “Photo-acoustic detection and ranging—a new technique for the remote detection of gases,” J. Phys. D 15, 219–228 (1982).
[CrossRef]

1980

R. M. Leo, H. L. Hawkins, P. John, R. G. Harrison, “Absorption measurements by pulsed optoacoustic detection,” J. Phys. E 13, 658–660 (1980).
[CrossRef]

Aho, M. J.

M. J. Aho, J. P. Hämäläinen, J. L. Tummavuori, “Importance of solid fuel properties to nitrogen oxide formation through HCN and NH3 in small particle combustion,” Combust. Flame 95, 22–30 (1993).
[CrossRef]

Åmand, L-E.

L-E. Åmand, B. Leckner, “Influence of fuel on the emission of nitrogen oxides (NO and N2O) from an 8-MW fluidized bed boiler,” Combust. Flame 84, 181–196 (1991).
[CrossRef]

Atkinson, G. H.

Botterill, J. S. M.

J. S. M. Botterill, “Fluidized bed behaviour,” in Fluidized Beds: Combustion and Applications, J. R. Howard, ed. (Applied Science, London, 1983), p. 1–36.

Branch, M. C.

J. Vandooren, M. C. Branch, P. J. van Tiggelen, “Comparisons of the structure of stoichiometric CH4–N2O–Ar and CH4–O2–Ar flames by molecular beam sampling and mass spectrometric analysis,” Combust. Flame 90, 247–258 (1992).
[CrossRef]

Brassington, J.

J. Brassington, “Photo-acoustic detection and ranging—a new technique for the remote detection of gases,” J. Phys. D 15, 219–228 (1982).
[CrossRef]

Cole, J. A.

R. K. Lyon, J. A. Cole, “Kinetic modeling of artifacts in the measurement of N2O from combustion sources,” Combust. Flame 77, 139–143 (1989).
[CrossRef]

J. C. Kramlich, J. A. Cole, J. M. McCarthy, S. W. Lanier, J. A. McSorley, “Mechanisms of nitrous oxide formation in coal flames,” Combust. Flame 77, 375–384 (1989).
[CrossRef]

Crosley, D. R.

Cvijin, P. V.

Dalidchik, F. I.

F. I. Dalidchik, I. S. Zaslonko, L. A. Marnacheva, Y. K. Mukoseev, “UF-absorptionnaja spektroskopiya molekuljarnykh “gorjachikh” polos (UV-absorption spectroscopy of molecular ‘hot’ bands),” Khim. Fiz. 7, 944–955 (1987).

Detlaf, A.

B. Yavorsky, A. Detlaf, Handbook of Physics (Mir, Moscow, 1980), p. 678.

Durant, J. L.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A 2∑+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

Dyer, M. J.

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988), pp. 304–319.

Edner, H.

Gilmore, D. A.

Gray, J. A.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A 2∑+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

Grinstead, J. H.

Gupta, R.

Hämäläinen, J. P.

M. J. Aho, J. P. Hämäläinen, J. L. Tummavuori, “Importance of solid fuel properties to nitrogen oxide formation through HCN and NH3 in small particle combustion,” Combust. Flame 95, 22–30 (1993).
[CrossRef]

Harrison, R. G.

R. M. Leo, H. L. Hawkins, P. John, R. G. Harrison, “Absorption measurements by pulsed optoacoustic detection,” J. Phys. E 13, 658–660 (1980).
[CrossRef]

Hawkins, H. L.

R. M. Leo, H. L. Hawkins, P. John, R. G. Harrison, “Absorption measurements by pulsed optoacoustic detection,” J. Phys. E 13, 658–660 (1980).
[CrossRef]

Hernberg, R.

J. Stenberg, R. Hernberg, “Laser photoacoustic probe for in-situ gas analysis in fluidized bed reactors,” in Proceedings of the Joint Meeting of the British and German Sections (Combustion Institute, Cambridge, Mass., 1993), pp. 259–262.

Hupa, M.

P. Kilpinen, M. Hupa, “Homogeneous N2O chemistry at fluidized bed combustion conditions: a kinetic modeling study,” Combust. Flame 85, 94–104 (1991).
[CrossRef]

K. Iisa, P. Salokoski, M. Hupa, “Heterogeneous formation and destruction of nitrous oxide under fluidized bed combustion conditions,” in Eleventh International Conference on Fluidized Bed Combustion (American Society of Mechanical Engineers, New York, 1991), pp. 1027–1033.

Iisa, K.

K. Iisa, P. Salokoski, M. Hupa, “Heterogeneous formation and destruction of nitrous oxide under fluidized bed combustion conditions,” in Eleventh International Conference on Fluidized Bed Combustion (American Society of Mechanical Engineers, New York, 1991), pp. 1027–1033.

John, P.

R. M. Leo, H. L. Hawkins, P. John, R. G. Harrison, “Absorption measurements by pulsed optoacoustic detection,” J. Phys. E 13, 658–660 (1980).
[CrossRef]

Kilpinen, P.

P. Kilpinen, M. Hupa, “Homogeneous N2O chemistry at fluidized bed combustion conditions: a kinetic modeling study,” Combust. Flame 85, 94–104 (1991).
[CrossRef]

Kohse-Höinghaus, K.

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 209–279 (1994).
[CrossRef]

Kramlich, J. C.

J. C. Kramlich, J. A. Cole, J. M. McCarthy, S. W. Lanier, J. A. McSorley, “Mechanisms of nitrous oxide formation in coal flames,” Combust. Flame 77, 375–384 (1989).
[CrossRef]

Krauss, R. H.

Lanier, S. W.

J. C. Kramlich, J. A. Cole, J. M. McCarthy, S. W. Lanier, J. A. McSorley, “Mechanisms of nitrous oxide formation in coal flames,” Combust. Flame 77, 375–384 (1989).
[CrossRef]

Laufer, G.

J. H. Grinstead, G. Laufer, R. H. Krauss, J. C. McDaniel, “Calibration source for OH laser-induced fluorescence-density measurements with thermally dissociated H2O in atmospheric air,” Appl. Opt. 33, 1115–1119 (1994).
[CrossRef] [PubMed]

T. M. Quagliaroli, G. Laufer, J. C. McDaniel, “Calibration of OH laser-induced fluorescence temperature measurements using thermally dissociated H2O,” Appl. Phys. B 59, 635–638 (1994).
[CrossRef]

Leckner, B.

L-E. Åmand, B. Leckner, “Influence of fuel on the emission of nitrogen oxides (NO and N2O) from an 8-MW fluidized bed boiler,” Combust. Flame 84, 181–196 (1991).
[CrossRef]

Leo, R. M.

R. M. Leo, H. L. Hawkins, P. John, R. G. Harrison, “Absorption measurements by pulsed optoacoustic detection,” J. Phys. E 13, 658–660 (1980).
[CrossRef]

Letokhov, V. P.

V. P. Zharov, V. P. Letokhov, Laser Optoacoustic Spectroscopy (Springer-Verlag, Heidelberg, Germany, 1986), pp. 16–44.

Lyon, R. K.

R. K. Lyon, J. A. Cole, “Kinetic modeling of artifacts in the measurement of N2O from combustion sources,” Combust. Flame 77, 139–143 (1989).
[CrossRef]

Marnacheva, L. A.

F. I. Dalidchik, I. S. Zaslonko, L. A. Marnacheva, Y. K. Mukoseev, “UF-absorptionnaja spektroskopiya molekuljarnykh “gorjachikh” polos (UV-absorption spectroscopy of molecular ‘hot’ bands),” Khim. Fiz. 7, 944–955 (1987).

McCarthy, J. M.

J. C. Kramlich, J. A. Cole, J. M. McCarthy, S. W. Lanier, J. A. McSorley, “Mechanisms of nitrous oxide formation in coal flames,” Combust. Flame 77, 375–384 (1989).
[CrossRef]

McDaniel, J. C.

T. M. Quagliaroli, G. Laufer, J. C. McDaniel, “Calibration of OH laser-induced fluorescence temperature measurements using thermally dissociated H2O,” Appl. Phys. B 59, 635–638 (1994).
[CrossRef]

J. H. Grinstead, G. Laufer, R. H. Krauss, J. C. McDaniel, “Calibration source for OH laser-induced fluorescence-density measurements with thermally dissociated H2O in atmospheric air,” Appl. Opt. 33, 1115–1119 (1994).
[CrossRef] [PubMed]

McSorley, J. A.

J. C. Kramlich, J. A. Cole, J. M. McCarthy, S. W. Lanier, J. A. McSorley, “Mechanisms of nitrous oxide formation in coal flames,” Combust. Flame 77, 375–384 (1989).
[CrossRef]

Mukoseev, Y. K.

F. I. Dalidchik, I. S. Zaslonko, L. A. Marnacheva, Y. K. Mukoseev, “UF-absorptionnaja spektroskopiya molekuljarnykh “gorjachikh” polos (UV-absorption spectroscopy of molecular ‘hot’ bands),” Khim. Fiz. 7, 944–955 (1987).

Paul, P. H.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A 2∑+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

Quagliaroli, T. M.

T. M. Quagliaroli, G. Laufer, J. C. McDaniel, “Calibration of OH laser-induced fluorescence temperature measurements using thermally dissociated H2O,” Appl. Phys. B 59, 635–638 (1994).
[CrossRef]

Rose, A.

Salamo, G. J.

Salokoski, P.

K. Iisa, P. Salokoski, M. Hupa, “Heterogeneous formation and destruction of nitrous oxide under fluidized bed combustion conditions,” in Eleventh International Conference on Fluidized Bed Combustion (American Society of Mechanical Engineers, New York, 1991), pp. 1027–1033.

Smith, G. P.

Stenberg, J.

J. Stenberg, R. Hernberg, “Laser photoacoustic probe for in-situ gas analysis in fluidized bed reactors,” in Proceedings of the Joint Meeting of the British and German Sections (Combustion Institute, Cambridge, Mass., 1993), pp. 259–262.

Sunesson, A.

Svanberg, S.

Thoman, J. W.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A 2∑+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

Toivanen, J.

J. Toivanen, Teknillinen Akustiikka (Otakustantamo, Espoo, Finland, 1981), p. 137 (in Finnish).

Tummavuori, J. L.

M. J. Aho, J. P. Hämäläinen, J. L. Tummavuori, “Importance of solid fuel properties to nitrogen oxide formation through HCN and NH3 in small particle combustion,” Combust. Flame 95, 22–30 (1993).
[CrossRef]

van Tiggelen, P. J.

J. Vandooren, M. C. Branch, P. J. van Tiggelen, “Comparisons of the structure of stoichiometric CH4–N2O–Ar and CH4–O2–Ar flames by molecular beam sampling and mass spectrometric analysis,” Combust. Flame 90, 247–258 (1992).
[CrossRef]

Vandooren, J.

J. Vandooren, M. C. Branch, P. J. van Tiggelen, “Comparisons of the structure of stoichiometric CH4–N2O–Ar and CH4–O2–Ar flames by molecular beam sampling and mass spectrometric analysis,” Combust. Flame 90, 247–258 (1992).
[CrossRef]

Vyas, R.

Yavorsky, B.

B. Yavorsky, A. Detlaf, Handbook of Physics (Mir, Moscow, 1980), p. 678.

Zaslonko, I. S.

F. I. Dalidchik, I. S. Zaslonko, L. A. Marnacheva, Y. K. Mukoseev, “UF-absorptionnaja spektroskopiya molekuljarnykh “gorjachikh” polos (UV-absorption spectroscopy of molecular ‘hot’ bands),” Khim. Fiz. 7, 944–955 (1987).

Zharov, V. P.

V. P. Zharov, V. P. Letokhov, Laser Optoacoustic Spectroscopy (Springer-Verlag, Heidelberg, Germany, 1986), pp. 16–44.

Appl. Opt.

Appl. Phys. B

T. M. Quagliaroli, G. Laufer, J. C. McDaniel, “Calibration of OH laser-induced fluorescence temperature measurements using thermally dissociated H2O,” Appl. Phys. B 59, 635–638 (1994).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A 2∑+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

Appl. Spectrosc.

Combust. Flame

J. Vandooren, M. C. Branch, P. J. van Tiggelen, “Comparisons of the structure of stoichiometric CH4–N2O–Ar and CH4–O2–Ar flames by molecular beam sampling and mass spectrometric analysis,” Combust. Flame 90, 247–258 (1992).
[CrossRef]

J. C. Kramlich, J. A. Cole, J. M. McCarthy, S. W. Lanier, J. A. McSorley, “Mechanisms of nitrous oxide formation in coal flames,” Combust. Flame 77, 375–384 (1989).
[CrossRef]

P. Kilpinen, M. Hupa, “Homogeneous N2O chemistry at fluidized bed combustion conditions: a kinetic modeling study,” Combust. Flame 85, 94–104 (1991).
[CrossRef]

L-E. Åmand, B. Leckner, “Influence of fuel on the emission of nitrogen oxides (NO and N2O) from an 8-MW fluidized bed boiler,” Combust. Flame 84, 181–196 (1991).
[CrossRef]

M. J. Aho, J. P. Hämäläinen, J. L. Tummavuori, “Importance of solid fuel properties to nitrogen oxide formation through HCN and NH3 in small particle combustion,” Combust. Flame 95, 22–30 (1993).
[CrossRef]

R. K. Lyon, J. A. Cole, “Kinetic modeling of artifacts in the measurement of N2O from combustion sources,” Combust. Flame 77, 139–143 (1989).
[CrossRef]

J. Phys. D

J. Brassington, “Photo-acoustic detection and ranging—a new technique for the remote detection of gases,” J. Phys. D 15, 219–228 (1982).
[CrossRef]

J. Phys. E

R. M. Leo, H. L. Hawkins, P. John, R. G. Harrison, “Absorption measurements by pulsed optoacoustic detection,” J. Phys. E 13, 658–660 (1980).
[CrossRef]

Khim. Fiz.

F. I. Dalidchik, I. S. Zaslonko, L. A. Marnacheva, Y. K. Mukoseev, “UF-absorptionnaja spektroskopiya molekuljarnykh “gorjachikh” polos (UV-absorption spectroscopy of molecular ‘hot’ bands),” Khim. Fiz. 7, 944–955 (1987).

Opt. Lett.

Prog. Energy Combust. Sci.

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 209–279 (1994).
[CrossRef]

Other

J. Stenberg, R. Hernberg, “Laser photoacoustic probe for in-situ gas analysis in fluidized bed reactors,” in Proceedings of the Joint Meeting of the British and German Sections (Combustion Institute, Cambridge, Mass., 1993), pp. 259–262.

J. S. M. Botterill, “Fluidized bed behaviour,” in Fluidized Beds: Combustion and Applications, J. R. Howard, ed. (Applied Science, London, 1983), p. 1–36.

B. Yavorsky, A. Detlaf, Handbook of Physics (Mir, Moscow, 1980), p. 678.

J. Toivanen, Teknillinen Akustiikka (Otakustantamo, Espoo, Finland, 1981), p. 137 (in Finnish).

D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 74th ed. (CRC, Boca Raton, Fla., 1993), pp. 5–48.

K. Iisa, P. Salokoski, M. Hupa, “Heterogeneous formation and destruction of nitrous oxide under fluidized bed combustion conditions,” in Eleventh International Conference on Fluidized Bed Combustion (American Society of Mechanical Engineers, New York, 1991), pp. 1027–1033.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988), pp. 304–319.

V. P. Zharov, V. P. Letokhov, Laser Optoacoustic Spectroscopy (Springer-Verlag, Heidelberg, Germany, 1986), pp. 16–44.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Construction of the PA probe.

Fig. 2
Fig. 2

Leading edge of the PA signal.

Fig. 3
Fig. 3

Calibrated response of the PA probe at atmospheric pressure.

Fig. 4
Fig. 4

Setup of PA calibration at elevated pressures.

Fig. 5
Fig. 5

Dependence of the PA signal on pressure.

Fig. 6
Fig. 6

Setup for and measured spectra in the HCN seeded flame.

Tables (1)

Tables Icon

Table 1 Detection Sensitivities at 850 °C and Atmospheric Pressure (in ppm)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δ P = Δ T P T = Δ u c V P T .
Δ u = E L n s σ as L η c R T P V ,
s pa = C ac E L n s σ as η c R S c V .
η c = Q A + Q .
s pa , cal = C ac E L n s , cal σ as η c , cal R S c V , cal
n s = n s , cal η c , cal η c c V c V , cal s pa s pa , cal .
Q = ( P / k T ) v s p χ p [ 1 + ( m s / m p ) ] 1 / 2 σ p ( T ) ,
γ = ω 2 2 ρ c 3 ( 4 3 μ + ζ + K M c P - c V c P c V ) .
2 1 + Z 1 Z 2 2 1 + T 2 T 1 ,
I sat = h ν 2 σ as .

Metrics