Abstract

Improvements to a fast and accurate transmittance-calculation procedure, Optical Path TRANsmittance (optran), are described. The previous version computed a transmittance ratio for an absorbing layer. It required special attention to the interpolation methodology. The new approach reported here computes the absorption coefficient for an absorbing layer. This modified approach is not only simpler but also runs in one twentieth the time of the original optran approach with the same accuracy.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. McMillin, H. E. Fleming, “Atmospheric transmittance of an absorbing gas: A computationally fast and accurate transmittance model for absorbing gases with constant mixing ratios in inhomogeneous atmospheres,” Appl. Opt. 15, 358–363 (1976).
    [Crossref] [PubMed]
  2. H. E. Fleming, L. M. McMillin, “Atmospheric transmittance of an absorbing gas 2: A computationally fast and accurate transmittance model for slant paths at different zenith angles,” Appl. Opt. 16, 1366–1370 (1977).
    [Crossref] [PubMed]
  3. L. M. McMillin, H. E. Fleming, M. L. Hill, “Atmospheric transmittance of an absorbing gas. 3: A computationally fast and accurate transmittance model for absorbing gases with variable mixing ratios,” Appl. Opt. 18, 1600–1606 (1979).
    [Crossref] [PubMed]
  4. L. M. McMillin, L. J. Crone, M. D. Goldberg, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 4. optran: a computationally fast and accurate transmittance model for absorbing gases with fixed and variable mixing ratios at variable viewing angles,” Appl. Opt. 34, 6269–6274 (1995).
    [Crossref] [PubMed]
  5. M. K. Griffin, V. J. Falcone, J. D. Pickle, R. G. Isaacs, “SSM/T-2 brightness temperature signatures,” in Preprint Volume of the Seventh Conference on Satellite Meteorology and Oceanography (American Meteorological Society, Boston, Mass., 1994), pp. 110–113.

1995 (1)

1979 (1)

1977 (1)

1976 (1)

Crone, L. J.

Falcone, V. J.

M. K. Griffin, V. J. Falcone, J. D. Pickle, R. G. Isaacs, “SSM/T-2 brightness temperature signatures,” in Preprint Volume of the Seventh Conference on Satellite Meteorology and Oceanography (American Meteorological Society, Boston, Mass., 1994), pp. 110–113.

Fleming, H. E.

Goldberg, M. D.

Griffin, M. K.

M. K. Griffin, V. J. Falcone, J. D. Pickle, R. G. Isaacs, “SSM/T-2 brightness temperature signatures,” in Preprint Volume of the Seventh Conference on Satellite Meteorology and Oceanography (American Meteorological Society, Boston, Mass., 1994), pp. 110–113.

Hill, M. L.

Isaacs, R. G.

M. K. Griffin, V. J. Falcone, J. D. Pickle, R. G. Isaacs, “SSM/T-2 brightness temperature signatures,” in Preprint Volume of the Seventh Conference on Satellite Meteorology and Oceanography (American Meteorological Society, Boston, Mass., 1994), pp. 110–113.

Kleespies, T. J.

McMillin, L. M.

Pickle, J. D.

M. K. Griffin, V. J. Falcone, J. D. Pickle, R. G. Isaacs, “SSM/T-2 brightness temperature signatures,” in Preprint Volume of the Seventh Conference on Satellite Meteorology and Oceanography (American Meteorological Society, Boston, Mass., 1994), pp. 110–113.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (1)

Tables Icon

Table 1 Errors in the Brightness Temperatures Produced by optran

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

τ ( ν , A i ) τ ( ν , A i - 1 ) = τ ref ( ν , A i ) τ ref ( ν , A i - 1 ) + j = 0 N C i j Z j i ,
k ^ ( A i ) = C i 0 + j = 1 N C i j Z j i ,
k ( A ) = - d d A ( ln τ ) .
k ( A * ) = ln τ ( A 1 ) - ln τ ( A 2 ) A 2 - A 1 .
τ ( A 2 ) τ ( A 1 ) = exp [ - k ( A * ) ( A 2 - A 1 ) ] .
[ exp ( 200 α ) - 1 ] / [ exp ( α ) - 1 ] = A 200 / A 1 .
P P i * = [ m = 1 i ( P m + P m - 1 ) ( A P m - A P , m - 1 ) ] / ( 2 A P i ) ,
T P i * = [ m = 1 i ( T P m + T P , m - 1 ) ( A P m - A P , m - 1 ) ] / ( 2 A P i ) ,
T P i * * = [ m = 1 i ( T P m A P m + T P , m - 1 A P , m - 1 ) ( A P m - A P , m - 1 ) ] / A P i 2 .
k P i * = - ln ( τ P i / τ P , i - 1 ) / ( A P i - A P , i - 1 ) .
τ P i = τ P , i - 1 exp [ - k P i * ( A P i - A P , i - 1 ) ] ,
τ P i = τ P , i - 1 exp { - [ k ^ ( W i ) ( W P i - W P , i - 1 ) + k ^ ( O i ) ( O P i - O P , i - 1 ) ] } .
τ o * = τ d + o τ d .
τ W * = τ d + o + W τ d + o .
τ ^ d + o + w = τ ^ d τ ^ o * τ ^ w *
k ^ ( W A i ) C i 0 + C i 1 P A i + C i 2 P A i 2 + C i 3 P A i * + C i 4 T A i .
k ^ ( O A i ) D i 0 + D i 1 P A i + D i 2 T A i + D i 3 T A i 2 + D i 4 T A i * * + D i 5 T A i / sec 2 θ .

Metrics