Abstract

A methodology for delineating the influence of finite spectral bandwidths and significant out-of-band response of sensors for remote sensing of ocean color is developed and applied to the Sea-viewing Wide-Field-of-view Sensor (SeaWiFS). The basis of the method is the application of the sensor’s spectral-response functions to the individual components of the top-of-the-atmosphere (TOA) radiance rather than the TOA radiance itself. For engineering purposes, this approach allows one to assess easily (and quantitatively) the potential of a particular sensor design for meeting the system—sensor plus algorithms—performance requirements. In the case of the SeaWiFS, two significant conclusions are reached. First, it is found that the out-of-band effects on the water-leaving radiance component of the TOA radiance are of the order of a few percent compared with a sensor with narrow spectral response. This implies that verification that the SeaWiFS system—sensor plus algorithms—meets the goal of providing the water-leaving radiance in the blue in clear ocean water to within 5% will require measurements of the water-leaving radiance over the entire visible spectrum as opposed to just narrow-band (10–20-nm) measurements in the blue. Second, it is found that the atmospheric correction of the SeaWiFS can be degraded by the influence of water-vapor absorption in the shoulders of the atmospheric-correction bands in the near infrared. This absorption causes an apparent spectral variation of the aerosol component between these two bands that will be uncharacteristic of the actual aerosol present, leading to an error in correction. This effect is dependent on the water-vapor content of the atmosphere. At typical water-vapor concentrations the error is larger for aerosols with a weak spectral variation in reflectance than for those that display a strong spectral variation. If the water-vapor content is known, a simple procedure is provided to remove the degradation of the atmospheric correction. Uncertainty in the water-vapor content will limit the accuracy of the SeaWiFS correction algorithm.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, SeaWiFS Technical Report Series: Vol. 1, an Overview of SeaWiFS and Ocean Color, Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992).
  2. H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
    [CrossRef] [PubMed]
  3. P. Y. Deschamps, M. Herman, D. Tanre, “Modeling of the atmospheric effects and its application to the remote sensing of ocean color,” Appl. Opt. 22, 3751–3758 (1983).
    [CrossRef] [PubMed]
  4. H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, “Phytoplankton pigments derived from the Nimbus-7 CZCS: initial comparisons with surface measurements,” Science 210, 63–66 (1980).
    [CrossRef] [PubMed]
  5. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and Coastal Zone Color Scanner estimates,” Appl. Opt. 22, 20–36 (1983).
    [CrossRef] [PubMed]
  6. H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988).
    [CrossRef] [PubMed]
  7. R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Technical Report Series: Vol. 23, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, Tech. Memo. 104566 (NASA, Greenbelt, Md., 1994).
  8. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
    [CrossRef]
  9. J.-M. André, A. Morel, “Simulated effects of barometric pressure and ozone content upon the estimate of marine phytoplankton from space,” J. Geophys. Res. 94, 1029–1037 (1989).
    [CrossRef]
  10. M. Nicolet, “The solar spectral irradiance and its action in the atmospheric photodissociation processes,” Planet. Space Sci. 29, 951–974 (1981).
    [CrossRef]
  11. H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 Å,” Solar Phys. 90, 205–258 (1984).
    [CrossRef]
  12. M. Wang, H. R. Gordon, “A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS,” Remote Sensing Environ. 50, 231–239 (1994).
    [CrossRef]
  13. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1979).
  14. F. X. Kenizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: the lowtran 6 model,” AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, HanscombAir Force Base, Mass., 1983).
  15. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
    [CrossRef]
  16. H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981).
    [CrossRef] [PubMed]
  17. D. K. Clark, “Phytoplankton algorithms for the Nimbus-7 CZCS,” in Oceanography from Space, J. R. F. Gower, ed. (Plenum, New York, 1981), pp. 227–238.
    [CrossRef]
  18. H. R. Gordon, K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37, 491–500 (1992).
    [CrossRef]
  19. F. X. Kneizys, E. P. Shettle, L. W. Abrea, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, Users Guide to lowtran 7, Publ. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1988).
  20. K. Ding, H. R. Gordon, “Analysis of the influence of O2A band absorption on atmospheric correction of ocean color imagery,” Appl. Opt. 34, 2068–2080 (1995).
    [CrossRef] [PubMed]

1995

1994

M. Wang, H. R. Gordon, “A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS,” Remote Sensing Environ. 50, 231–239 (1994).
[CrossRef]

H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
[CrossRef] [PubMed]

1992

H. R. Gordon, K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37, 491–500 (1992).
[CrossRef]

1989

J.-M. André, A. Morel, “Simulated effects of barometric pressure and ozone content upon the estimate of marine phytoplankton from space,” J. Geophys. Res. 94, 1029–1037 (1989).
[CrossRef]

1988

H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988).
[CrossRef] [PubMed]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

1984

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 Å,” Solar Phys. 90, 205–258 (1984).
[CrossRef]

1983

1981

M. Nicolet, “The solar spectral irradiance and its action in the atmospheric photodissociation processes,” Planet. Space Sci. 29, 951–974 (1981).
[CrossRef]

H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981).
[CrossRef] [PubMed]

1980

H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, “Phytoplankton pigments derived from the Nimbus-7 CZCS: initial comparisons with surface measurements,” Science 210, 63–66 (1980).
[CrossRef] [PubMed]

1974

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Abrea, L. W.

F. X. Kneizys, E. P. Shettle, L. W. Abrea, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, Users Guide to lowtran 7, Publ. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1988).

Abreu, L. W.

F. X. Kenizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: the lowtran 6 model,” AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, HanscombAir Force Base, Mass., 1983).

Anderson, G. P.

F. X. Kneizys, E. P. Shettle, L. W. Abrea, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, Users Guide to lowtran 7, Publ. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1988).

André, J.-M.

J.-M. André, A. Morel, “Simulated effects of barometric pressure and ozone content upon the estimate of marine phytoplankton from space,” J. Geophys. Res. 94, 1029–1037 (1989).
[CrossRef]

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Barnes, R. A.

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Technical Report Series: Vol. 23, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, Tech. Memo. 104566 (NASA, Greenbelt, Md., 1994).

Barnes, W. L.

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Technical Report Series: Vol. 23, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, Tech. Memo. 104566 (NASA, Greenbelt, Md., 1994).

Broenkow, W. W.

Brown, J. W.

Brown, O. B.

Chetwynd, J. H.

F. X. Kneizys, E. P. Shettle, L. W. Abrea, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, Users Guide to lowtran 7, Publ. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1988).

F. X. Kenizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: the lowtran 6 model,” AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, HanscombAir Force Base, Mass., 1983).

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and Coastal Zone Color Scanner estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, “Phytoplankton pigments derived from the Nimbus-7 CZCS: initial comparisons with surface measurements,” Science 210, 63–66 (1980).
[CrossRef] [PubMed]

D. K. Clark, “Phytoplankton algorithms for the Nimbus-7 CZCS,” in Oceanography from Space, J. R. F. Gower, ed. (Plenum, New York, 1981), pp. 227–238.
[CrossRef]

Clough, S. A.

F. X. Kenizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: the lowtran 6 model,” AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, HanscombAir Force Base, Mass., 1983).

F. X. Kneizys, E. P. Shettle, L. W. Abrea, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, Users Guide to lowtran 7, Publ. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1988).

Deschamps, P. Y.

Ding, K.

Esaias, W. E.

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Technical Report Series: Vol. 23, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, Tech. Memo. 104566 (NASA, Greenbelt, Md., 1994).

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, SeaWiFS Technical Report Series: Vol. 1, an Overview of SeaWiFS and Ocean Color, Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992).

Evans, R. H.

Feldman, G. C.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, SeaWiFS Technical Report Series: Vol. 1, an Overview of SeaWiFS and Ocean Color, Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992).

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1979).

F. X. Kenizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: the lowtran 6 model,” AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, HanscombAir Force Base, Mass., 1983).

Gallery, W. O.

F. X. Kenizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: the lowtran 6 model,” AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, HanscombAir Force Base, Mass., 1983).

F. X. Kneizys, E. P. Shettle, L. W. Abrea, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, Users Guide to lowtran 7, Publ. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1988).

Gordon, H. R.

K. Ding, H. R. Gordon, “Analysis of the influence of O2A band absorption on atmospheric correction of ocean color imagery,” Appl. Opt. 34, 2068–2080 (1995).
[CrossRef] [PubMed]

M. Wang, H. R. Gordon, “A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS,” Remote Sensing Environ. 50, 231–239 (1994).
[CrossRef]

H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
[CrossRef] [PubMed]

H. R. Gordon, K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37, 491–500 (1992).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and Coastal Zone Color Scanner estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, “Phytoplankton pigments derived from the Nimbus-7 CZCS: initial comparisons with surface measurements,” Science 210, 63–66 (1980).
[CrossRef] [PubMed]

Gregg, W. W.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, SeaWiFS Technical Report Series: Vol. 1, an Overview of SeaWiFS and Ocean Color, Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992).

Hansen, J. E.

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Herman, M.

Holmes, A. W.

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Technical Report Series: Vol. 23, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, Tech. Memo. 104566 (NASA, Greenbelt, Md., 1994).

Hooker, S. B.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, SeaWiFS Technical Report Series: Vol. 1, an Overview of SeaWiFS and Ocean Color, Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992).

Hovis, W. A.

H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, “Phytoplankton pigments derived from the Nimbus-7 CZCS: initial comparisons with surface measurements,” Science 210, 63–66 (1980).
[CrossRef] [PubMed]

Kenizys, F. X.

F. X. Kenizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: the lowtran 6 model,” AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, HanscombAir Force Base, Mass., 1983).

Kneizys, F. X.

F. X. Kneizys, E. P. Shettle, L. W. Abrea, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, Users Guide to lowtran 7, Publ. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1988).

Labs, D.

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 Å,” Solar Phys. 90, 205–258 (1984).
[CrossRef]

McClain, C. R.

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Technical Report Series: Vol. 23, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, Tech. Memo. 104566 (NASA, Greenbelt, Md., 1994).

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, SeaWiFS Technical Report Series: Vol. 1, an Overview of SeaWiFS and Ocean Color, Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992).

Morel, A.

J.-M. André, A. Morel, “Simulated effects of barometric pressure and ozone content upon the estimate of marine phytoplankton from space,” J. Geophys. Res. 94, 1029–1037 (1989).
[CrossRef]

Mueller, J. L.

H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, “Phytoplankton pigments derived from the Nimbus-7 CZCS: initial comparisons with surface measurements,” Science 210, 63–66 (1980).
[CrossRef] [PubMed]

Neckel, H.

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 Å,” Solar Phys. 90, 205–258 (1984).
[CrossRef]

Nicolet, M.

M. Nicolet, “The solar spectral irradiance and its action in the atmospheric photodissociation processes,” Planet. Space Sci. 29, 951–974 (1981).
[CrossRef]

Selby, J. E. A.

F. X. Kenizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: the lowtran 6 model,” AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, HanscombAir Force Base, Mass., 1983).

F. X. Kneizys, E. P. Shettle, L. W. Abrea, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, Users Guide to lowtran 7, Publ. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1988).

Shettle, E. P.

F. X. Kneizys, E. P. Shettle, L. W. Abrea, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, Users Guide to lowtran 7, Publ. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1988).

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1979).

F. X. Kenizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: the lowtran 6 model,” AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, HanscombAir Force Base, Mass., 1983).

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Svitek, T.

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Technical Report Series: Vol. 23, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, Tech. Memo. 104566 (NASA, Greenbelt, Md., 1994).

Tanre, D.

Travis, L. D.

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Wang, M.

H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
[CrossRef] [PubMed]

M. Wang, H. R. Gordon, “A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS,” Remote Sensing Environ. 50, 231–239 (1994).
[CrossRef]

Appl. Opt.

J. Geophys. Res.

J.-M. André, A. Morel, “Simulated effects of barometric pressure and ozone content upon the estimate of marine phytoplankton from space,” J. Geophys. Res. 94, 1029–1037 (1989).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Limnol. Oceanogr.

H. R. Gordon, K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37, 491–500 (1992).
[CrossRef]

Planet. Space Sci.

M. Nicolet, “The solar spectral irradiance and its action in the atmospheric photodissociation processes,” Planet. Space Sci. 29, 951–974 (1981).
[CrossRef]

Remote Sensing Environ.

M. Wang, H. R. Gordon, “A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS,” Remote Sensing Environ. 50, 231–239 (1994).
[CrossRef]

Science

H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, “Phytoplankton pigments derived from the Nimbus-7 CZCS: initial comparisons with surface measurements,” Science 210, 63–66 (1980).
[CrossRef] [PubMed]

Solar Phys.

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 Å,” Solar Phys. 90, 205–258 (1984).
[CrossRef]

Space Sci. Rev.

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Other

R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Technical Report Series: Vol. 23, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, Tech. Memo. 104566 (NASA, Greenbelt, Md., 1994).

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1979).

F. X. Kenizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: the lowtran 6 model,” AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, HanscombAir Force Base, Mass., 1983).

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, SeaWiFS Technical Report Series: Vol. 1, an Overview of SeaWiFS and Ocean Color, Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992).

D. K. Clark, “Phytoplankton algorithms for the Nimbus-7 CZCS,” in Oceanography from Space, J. R. F. Gower, ed. (Plenum, New York, 1981), pp. 227–238.
[CrossRef]

F. X. Kneizys, E. P. Shettle, L. W. Abrea, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, Users Guide to lowtran 7, Publ. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Spectral response of SeaWiFS band 8, normalized such that ∫ S 8(λ)dλ = 1. Data are taken from Barnes et al.7

Fig. 2
Fig. 2

w (λ)] N for C = 0.03, 1.0 mg/m3. Model computations were carried out at the points indicated by the circles and interpolated to other wavelengths.

Fig. 3
Fig. 3

SeaWiFS band 8 spectral response (dotted curve) and atmospheric transmittance of H2O and O2 (solid curve) for the lowtran tropical atmosphere (with the most water vapor). H2O and O2 transmittances are on a linear scale such that 10− ⇒ transmittance of 0.9, 10−2 ⇒ a transmittance of 0.8, etc.

Fig. 4
Fig. 4

Difference between N r (λ) and A r (λ) as a function of λ for the lowtran Subarctic winter atmosphere (with the least water vapor) and M = 3, as described in the text.

Fig. 5
Fig. 5

Maximum value of Δɛ(2, 8)/ɛ(2, 8) as a function of τ a required to provide an error in the water-leaving radiance in band 2 of less than 5%, as described in the text. The lower line is for the T70 aerosol model, and the upper line for M98.

Fig. 6
Fig. 6

Comparison between the true values of 〈ɛ(λ, 865)〉 F 0 S 8 /ɛ(λ8, 865) with those computed with Eq. (21) and Table 12.

Tables (13)

Tables Icon

Table 1 Percent Difference between the Right (R) and Left (L) Sides of Eq. (10) for M = 3 for the SeaWiFS Bands

Tables Icon

Table 2 Quantities Needed to Compute 〈L r (λ)〉 S i and L r i ) for the SeaWiFS Bands

Tables Icon

Table 3 Percent Difference between the Estimated (E) and Correct (C) Values of 〈Lr(λ)〉 S i as Described in the Text

Tables Icon

Table 4 〈ɛ(λ, 865)〉 F 0 S i , ɛ(λ i , 865), and their Percent Difference for c = 2 × 10−3 nm−1

Tables Icon

Table 5 Comparison between the Quantities Xi ≡ 〈t v , λ)t0, λ)[ρ w (λ)] N F 0 S i and Y i t v , λ i )t0, λ i )[ρ w i )] N for C = 0.03, 1.0 mg/m3 and M = 2a

Tables Icon

Table 6 Percent Difference between the Right (R) and Left (L) Sides of Eq. (17) for M = 3 for the SeaWiFS Bands

Tables Icon

Table 7N r (λ)F 0(λ)〉 S i A r 〈λ)F 0(λ)〉 S i for θ0 = 60° and Nadir Viewing

Tables Icon

Table 8N r (λ)F 0(λ)〉 S i A r 〈λ)F 0(λ〉 S i for the U.S. Standard Atmosphere with Nadir Viewing

Tables Icon

Table 9 Comparison between 〈ɛ(λ, 865)〉 F 0 S i with Gas Absorption and ɛ(λ i , 865) for the lowtran Tropical Atmosphere with M = 3

Tables Icon

Table 10 Comparison between the Exact and the Extrapolated Values of ɛ ɛ(i, 8) for the lowtran Tropical Atmosphere with M = 3

Tables Icon

Table 11 Percent Error in the Extrapolated Value of ɛ(2, 8) for c = 0 and M = 3 as a Function of the Water-Vapor Concentration (w) in the lowtran Atmospheric Models

Tables Icon

Table 12 Coefficients a nm in Eq. (21) for SeaWiFS Bands 6, 7, and 8 for c (in Inverse Nanometers) and w (in Grams per Square Centimeter)a

Tables Icon

Table 13 Nominal SeaWiFS Instrument Parameters

Equations (47)

Equations on this page are rendered with MathJax. Learn more.

L t ( λ ) = L r ( λ ) + L a ( λ ) + L r a ( λ ) + t L w ( λ ) ,
t ( θ v , λ ) = exp { - [ τ r ( λ ) 2 + τ Oz ( λ ) ] ( 1 μ v ) } t a ( θ v , λ ) ,
t a ( θ v , λ ) = exp [ - [ 1 - ω a ( λ ) F a ( μ v , λ ) ] τ a ( λ ) μ v ] ,
F a ( μ v , λ ) = 1 4 π 0 1 P a ( α , λ ) d μ d ϕ ,
cos α = μ μ v + [ ( 1 - μ 2 ) ( 1 - μ v 2 ) ] 1 / 2 cos ϕ .
L r ( λ ) = L r s s ( λ ) = F 0 ( λ ) ω r ( λ ) τ r ( λ ) p r ( θ v x , θ 0 , λ ) / 4 π cos θ v ,
p r ( θ v , θ 0 , λ ) = P r ( θ - , λ ) + [ r ( θ v ) + r ( τ 0 ) ] P r ( θ + , λ ) , cos θ ± = ± cos θ 0 cos θ v - sin θ 0 sin θ v cos ( ϕ v - ϕ 0 ) ,
F 0 ( λ ) = F 0 ( λ ) T Oz ( λ ) = F 0 ( λ ) exp [ - τ Oz ( λ ) M ] ,
M = ( 1 cos θ v + 1 cos θ 0 ) .
L a ( λ ) + L r a ( λ ) = C [ θ v , ϕ v , θ 0 , ϕ 0 , L a s s ( λ ) , λ ] L a s s ( λ ) ,
L a ( λ ) + L r a ( λ ) = C ( θ v , ϕ v , θ 0 , ϕ 0 ) L a s s ( λ ) ,
L ( λ ) S i L ( λ ) S i ( λ ) d λ S i ( λ ) d λ .
L r ( λ ) S i = τ r ( λ ) F 0 ( λ ) S i G ( θ 0 , θ v , ϕ v ) ,
τ r ( λ ) F 0 ( λ ) S i = τ r ( λ ) F 0 S i F 0 ( λ ) S i ,
τ r ( λ ) F 0 S i τ r ( λ ) F 0 ( λ ) S i ( λ ) d λ F 0 ( λ ) S i ( λ ) d λ .
τ r ( λ ) F 0 ( λ ) S i τ r ( λ ) F 0 S i F 0 ( λ ) S i × exp [ - τ Oz ( λ ) F 0 S i M ] .
τ r = 0.008569 λ - 4 ( 1 + 0.0113 λ - 2 + 0.00013 λ - 4 ) ,
τ Oz ( λ ) = k Oz ( λ ) DU 1000 ,
L r ( λ ) = I r ( λ ) F 0 ( λ ) exp [ - τ Oz ( λ ) M ]
L r ( λ ) S i = I r ( i ) F 0 ( λ ) S i exp [ - τ Oz ( λ ) F 0 S i M ] .
ɛ ( λ , λ 0 ) = I a s s ( λ ) I a s s ( λ 0 ) .
L a s s = F 0 ( λ ) ɛ ( λ , λ 0 ) I a s s ( λ 0 ) ,
L a s s ( λ ) S i = F 0 ( λ ) S i ɛ ( λ , λ 0 ) F 0 S i I a s s ( λ 0 ) .
ɛ ( λ , λ 0 ) exp [ c ( λ 0 - λ ) ] ,
L w ( λ ) = t ( θ 0 , λ ) cos θ 0 [ L w ( λ ) ] N ,
[ ρ w ( λ ) ] N = π [ L w ( λ ) ] N F 0 ( λ ) .
t ( θ v , λ ) L w ( λ ) = cos θ 0 π t ( θ v , λ ) t ( θ 0 , λ ) F 0 ( λ ) [ ρ w ( λ ) ] N ,
t ( θ v , λ ) L w ( λ ) S i = cos θ 0 π × F 0 ( λ ) S i t ( θ v , λ ) t ( θ 0 , λ ) [ ρ w ( λ ) ] N F 0 S i .
t ( θ v , λ ) t ( θ 0 , λ ) [ ρ w ( λ ) ] N F 0 S i t ( θ v , i ) t ( θ 0 , i ) [ ρ w ( λ ) ] N F 0 S i ,
t ( θ , i ) = exp { - [ τ r ( λ ) F 0 S i 2 + τ Oz ( λ ) F 0 S i ] 1 cos θ } .
1.015 T Oz - 1 [ 1 - a ( 1050 - λ ) 2 ] - 1 ,
L a + L r a ( L a + L r a ) T g ( λ , M ) ,
ɛ ( λ , λ 0 ) F 0 S i T g ( λ , M ) ɛ ( λ , λ 0 ) F 0 S i T g ( λ , M ) exp [ c ( λ 0 - λ ) ] F 0 S i .
t L w ( λ ) S i = L t ( λ ) S i - L r ( λ ) S i - L a ( λ ) + L r a ( λ ) S i .
L a ( λ ) + L r a ( λ ) S i = F 0 ( λ ) S i F 0 ( λ ) S 8 ɛ ( i , 8 ) L a ( λ ) + L r a ( λ ) S 8 ,
ɛ ( i , 8 ) ɛ ( λ , 865 ) F 0 S i ɛ ( λ , 865 ) F 0 S 8 .
ɛ ( i , 8 ) = exp [ c ( 865 - λ i ) ] ,
Δ ɛ ( i , 8 ) ɛ ( i , 8 ) = Δ t ( θ v , λ ) L w ( λ ) S i L a ( λ ) + L r a S i = t ( θ v , λ ) Δ L w ( λ ) S i L w ( λ ) S i L w ( λ ) S i L a ( λ ) + L r a ( λ ) S i .
Δ ɛ ( i , 8 ) ɛ ( i , 8 ) t ( θ v , i ) L w S i L a ( λ ) + L r a ( λ ) S i p ,
ρ ( λ ) F 0 S i = π L ( λ ) S i F 0 ( λ ) S i cos θ 0 ,
Δ ɛ ( i , 8 ) ɛ ( i , 8 ) t ( θ v , i ) ρ w ( λ ) F 0 S i ρ a ( λ ) + ρ r a ( λ ) F 0 S i p = t ( θ v , i ) t ( θ 0 , i ) [ ρ w ( λ ) ] N F 0 S i ρ a ( λ ) + ρ r a ( λ ) F 0 S i p .
Δ ɛ ( 2 , 8 ) ɛ ( 2 , 8 ) 0.00125 ρ a ( λ ) + ρ r a ( λ ) S 2 .
f i ( c , M , w ) ɛ ( λ , 865 ) F 0 S i ɛ ( λ i , 865 ) ,
ɛ ( i , 8 ) = f i ( c , M , w ) f 8 ( c , M , w ) ɛ ( λ i , 865 ) .
f i ( c , M , w ) = ( a 01 + a 02 M ) + ( a 03 + a 04 M ) c + [ ( a 11 + a 12 M ) + ( a 13 + a 14 M ) c ] w + [ ( a 21 + a 22 M ) + ( a 23 + a 24 M ) c ] w 2 ,
ρ a ( λ ) + ρ r a ( λ ) = C [ θ v , ϕ v , θ 0 , ϕ 0 , ρ a s s ( λ ) , λ ] ρ a s s ( λ ) ,
ρ a ( λ ) + ρ r a ( λ ) F 0 S i = C [ θ v , ϕ v , θ 0 , ϕ 0 , ρ a s s ( λ i ) , λ i ] × ρ a s s ( λ ) F 0 S i = C [ θ v , ϕ v , θ 0 , ϕ 0 , ρ a s s ( λ i ) , λ i ] × [ ɛ ( λ , 865 ) F 0 S i ɛ ( λ i , 865 ) ρ a s s ( λ i ) ] = C [ θ v , ϕ v , θ 0 , ϕ 0 , ρ a s s ( λ i ) , λ i ] × f i ( c , M , w ) ρ a s s ( λ i ) ;

Metrics