Abstract

An algorithm that permits the retrieval of profiles of particle mass and surface-area concentrations in the stratospheric aerosol layer from independently measured aerosol (particle and Rayleigh) and molecule (Raman or Rayleigh) backscatter signals is developed. The determination is based on simultaneously obtained particle extinction and backscatter profiles and on relations between optical and microphysical properties found from Mie-scattering calculations for realistic stratospheric particle size distributions. The size distributions were measured with particle counters released on balloons from Laramie, Wyoming, between June 1991 and April 1994. Mass and surface-area concentrations can be retrieved with relative errors of 10–20% and 20–40%, respectively, with a laser wavelength of 355 nm and with errors of 20–30% and 30–60%, respectively, with a laser wavelength of 308 nm. Lidar measurements taken within the first three years after the eruption of Mt. Pinatubo in June 1991 are shown. Surface-area concentrations around 20 μm2 cm−3 and mass concentrations of 3 to 6 μg m−3 were found until spring 1993.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Deshler, B. J. Johnson, W. R. Rozier, “Balloonborne measurements of Pinatubo aerosol during 1991 and 1992 at 41° N: vertical profiles, size distribution, and volatility,” Geophys. Res. Lett. 20, 1435–1438 (1993).
    [CrossRef]
  2. G. J. S. Bluth, S. D. Doiron, A. J. Krueger, L. S. Walter, C. C. Schnetzler, “Global tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions,” Geophys. Res. Lett. 19, 151–154 (1992).
    [CrossRef]
  3. R. D. McPeters, “The atmospheric SO2 budget for Pinatubo derived from NOAA-11 SBUV/2 spectral data,” Geophys. Res. Lett. 20, 1971–1974 (1993).
    [CrossRef]
  4. M. P. McCormick, R. E. Veiga, “SAGE II measurements of early Pinatubo aerosols,” Geophys. Res. Lett. 19, 155–158 (1992).
    [CrossRef]
  5. M. P. McCormick, L. W. Thomason, C. R. Trepte, “Atmospheric effects of the Mt. Pinatubo eruption,” Nature 373, 399–404 (1995).
    [CrossRef]
  6. J. Hansen, A. Lacis, R. Ruedy, M. Sato, “Potential climate impact of Mount Pinatubo eruption,” Geophys. Res. Lett. 19, 215–218 (1992).
    [CrossRef]
  7. A. Lacis, J. Hansen, M. Sato, “Climate forcing by stratospheric aerosols,” Geophys. Res. Lett. 19, 1607–1610 (1992).
    [CrossRef]
  8. J. B. Pollack, D. Rind, A. Lacis, J. E. Hansen, M. Sato, R. Ruedy, “GCM simulations of volcanic aerosol forcing. Part I: Climate changes induced by steady-state perturbations,” J. Climate 6, 1719–1742 (1993).
    [CrossRef]
  9. A. Robock, J. Mao, “Winter warming from large volcanic eruptions,” Geophys. Res. Lett. 19, 2405–2408 (1992).
    [CrossRef]
  10. A. Robock, Y. Liu, “The volcanic signal in Goddard Institute for Space Studies three-dimensional model simulations,” J. Climate 7, 44–55 (1994).
    [CrossRef]
  11. J. K. Angell, “Comparison of stratospheric warming following Agung, El Chichon and Pinatubo volcanic eruptions,” Geophys. Res. Lett. 20, 715–718 (1993).
    [CrossRef]
  12. P. Minnis, E. F. Harrison, L. L. Stowe, G. G. Gibson, F. M. Denn, D. R. Doelling, W. L. Smith, “Radiative climate forcing by the Mount Pinatubo eruption,” Science 259, 1411–1415 (1993).
    [CrossRef] [PubMed]
  13. K. Labitzke, “Stratospheric temperature changes after the Pinatubo eruption,” J. Atmos. Terres. Phys. 56, 1027–1034 (1994).
    [CrossRef]
  14. P. Y. Groisman, “Possible regional climate consequences of the Pinatubo eruption: an empirical approach,” Geophys. Res. Lett. 19, 1603–1606 (1992).
    [CrossRef]
  15. H.-F. Graf, I. Kirchner, A. Robock, I. Schult, “Pinatubo eruption winter climate effects: model versus observations,” Climate Dynamics 9, 81–93 (1993).
  16. H.-F. Graf, J. Perlwitz, I. Kirchner, “Northern hemisphere tropospheric midlatitude circulation after violent volcanic eruptions,” Contrib. Atmos. Phys. 67, 3–13 (1994).
  17. K. Kodera, “Influence of volcanic eruptions on the troposphere through stratospheric dynamical processes in the northern hemisphere winter,” J. Geophys. Res. 99, 1273–1282 (1994).
    [CrossRef]
  18. E. J. Jensen, O. B. Toon, “The potential effects of volcanic aerosols on cirrus cloud microphysics,” Geophys. Res. Lett. 19, 1759–1762 (1992).
    [CrossRef]
  19. K. Sassen, “Evidence for liquid-phase cirrus cloud formation from volcanic aerosols: climatic implications,” Science 257, 516–519 (1992).
    [CrossRef] [PubMed]
  20. D. J. Hofmann, S. Solomon, “Ozone destruction through heterogeneous chemistry following the eruption of El Chichón,” J. Geophys. Res. 94, 5029–5041 (1989).
    [CrossRef]
  21. K. Arnold, T. Bürke, S. Qui, “Evidence for stratospheric ozone-depleting heterogeneous chemistry on volcanic aerosols from El Chichón,” Nature 348, 49–50 (1990).
    [CrossRef]
  22. C. Granier, G. Brasseur, “Impact of heterogeneous chemistry on model predictions of ozone changes,” J. Geophys. Res. 97, 18015–18033 (1992).
    [CrossRef]
  23. S. Solomon, “Progress towards a quantitative understanding of Antarctic ozone depletion,” Nature 347, 347–354 (1990).
    [CrossRef]
  24. G. Brasseur, C. Granier, “Mount Pinatubo aerosols, chlorofluorocarbons, and ozone depletion,” Science 257, 1239–1242 (1992).
    [CrossRef] [PubMed]
  25. L. L. Stowe, R. M. Carey, P. P. Pellegrino, “Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data,” Geophys. Res. Lett. 19, 159–162 (1992).
    [CrossRef]
  26. C. R. Trepte, R. E. Veiga, M. P. McCormick, “The poleward dispersal of Mount Pinatubo volcanic aerosol,” J. Geophys. Res. 98, 18563–18573 (1993).
    [CrossRef]
  27. A. Lambert, R. G. Grainger, J. J. Remedios, C. D. Rodgers, M. Corney, F. W. Taylor, “Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAMS,” Geophys. Res. Lett. 20, 1287–1290 (1993).
    [CrossRef]
  28. M. E. Hervig, J. M. Russell, L. L. Gordley, J. H. Park, S. R. Drayson, “Observations of aerosol by the HALOE experiment onboard UARS: a preliminary validation,” Geophys. Res. Lett. 20, 1291–1294 (1993).
    [CrossRef]
  29. F. P. J. Valero, P. Pilewskie, “Latitudinal survey of spectral optical depths of the Pinatubo volcanic cloud—derived partical sizes, columnar mass loadings, and effects on planetary albedo,” Geophys. Res. Lett. 19, 163–166 (1992).
    [CrossRef]
  30. S. Asano, A. Uchiyama, M. Shiobara, “Spectral optical thickness and size distribution of the Pinatubo volcanic aerosols as estimated by ground-based sunphotometry,” J. Meteorol. Soc. Jpn. 71, 165–173 (1993).
  31. R. S. Stone, J. R. Key, E. G. Dutton, “Properties and decay of stratospheric aerosols in the arctic following the 1991 eruptions of Mount Pinatubo,” Geophys. Res. Lett. 20, 2359–2362 (1993).
    [CrossRef]
  32. C. A. Brock, H. H. Jonsson, J. C. Wilson, J. E. Dye, D. Baumgardner, S. Borrmann, M. C. Pitts, M. T. Osborn, R. J. DeCoursey, D. C. Woods, “Relationships between optical extinction, backscatter and aerosol surface and volume in the stratosphere following the eruption of Mt. Pinatubo,” Geophys. Res. Lett. 20, 2555–2558 (1993).
    [CrossRef]
  33. P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Pueschel, J. A. Reagan, T. E. DeFoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22969–22985 (1993).
    [CrossRef]
  34. M. Stettler, W. von Hoyningen-Huene, “Estimation of Pinatubo aerosol size distribution and its influence on spectral optical thickness measurements in Canada,” Contrib. Atmos. Phys. 66, 347–354 (1993).
  35. E. G. Dutton, P. Reddy, S. Ryan, J. J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994).
    [CrossRef]
  36. T. Hayasaka, N. Iwasaka, G. Hashida, I. Takizawa, M. Tanaka, “Changes in stratospheric aerosols and solar insolation due to Mt. Pinatubo eruption as observed over the western Pacific,” Geophys. Res. Lett. 21, 1137–1140 (1994).
    [CrossRef]
  37. R. F. Pueschel, P. B. Russell, D. A. Allen, G. V. Ferry, K. G. Snetsinger, J. M. Livingston, S. Verma, “Physical and optical properties of the Pinatubo volcanic aerosol: aircraft observations with impactors and a sun-tracking photometer,” J. Geophys. Res. 99, 12915–12922 (1994).
    [CrossRef]
  38. J. Goodman, K. G. Snetsinger, R. F. Pueschel, G. V. Ferry, S. Verma, “Evolution of Pinatubo aerosol near 19 km altitude over western North America,” Geophys. Res. Lett. 21, 1129–1132 (1994).
    [CrossRef]
  39. J. M. Rosen, N. T. Kjome, R. L. McKenzie, J. B. Liley, “Decay of Mount Pinatubo aerosol at midlatitudes in the northern and southern hemispheres,” J. Geophys. Res. 99, 25733–25739 (1994).
    [CrossRef]
  40. C. J. Grund, E. W. Eloranta, “University of Wisconsin High Spectral Resolution Lidar,” Opt. Eng. 30, 6–12 (1991).
    [CrossRef]
  41. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
    [CrossRef] [PubMed]
  42. A. Ansmann, U. Wandinger, C. Weitkamp, “One-year observations of Mount-Pinatubo aerosol with an advanced Raman lidar over Germany at 53.5° N,” Geophys. Res. Lett. 20, 711–714 (1993).
    [CrossRef]
  43. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November–December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992).
    [CrossRef]
  44. A. Ansmann, H. Jäger, “Retrieval of the Pinatubo-aerosol optical depth and microphysical parameters from lidar measurements,” Rev. Laser Eng. 23, 154–160 (1995).
    [CrossRef]
  45. H. Jäger, D. Hofmann, “Midlatitude lidar backscatter to mass, area, and extinction conversion model based on in situ measurements from 1980 to 1987,” Appl. Opt. 30, 127–138 (1991).
    [CrossRef] [PubMed]
  46. H. Jäger, T. Deshler, D. J. Hofmann, “Midlatitude lidar backscatter conversions based on balloonborne aerosol measurements,” Geophys. Res. Lett. 22, 1729–1732 (1995).
    [CrossRef]
  47. L. W. Thomason, M. T. Osborn, “Lidar conversion parameters derived from SAGE II extinction measurements,” Geophys. Res. Lett. 19, 1655–1658 (1992).
    [CrossRef]
  48. B. Stein, M. Del Guasta, J. Kolenda, M. Morandi, P. Rairoux, L. Stefanutti, J. P. Wolf, L. Wöste, “Stratospheric aerosol size distributions from multispectral lidar measurements at Sodankylä during EASOE,” Geophys. Res. Lett. 21, 1311–1314 (1994).
    [CrossRef]
  49. G. Beyerle, R. Neuber, O. Schrems, F. Wittrock, B. Knudsen, “Multiwavelength lidar measurements of stratospheric aerosols above Spitzbergen during winter 1992/93,” Geophys. Res. Lett. 21, 57–60 (1994).
    [CrossRef]
  50. D. J. Hofmann, T. Deshler, “Stratospheric cloud observations during formation of the antarctic ozone hole in 1989,” J. Geophys. Res. 96, 2897–2912 (1991).
    [CrossRef]
  51. H. M. Steele, P. Hamill, “Effects of temperature and humidity on the growth and optical properties of sulphuric acid–water droplets in the stratosphere,” J. Aerosol Sci. 12, 517–528 (1981).
    [CrossRef]
  52. D. J. Hofmann, S. J. Oltmans, “The effect of stratospheric water vapor on the heterogeneous reaction rate of ClONO2 and H2O for sulfuric acid aerosol,” Geophys. Res. Lett. 19, 2211–2214 (1992).
    [CrossRef]
  53. J. Zhao, R. P. Turco, O. B. Toon, “A model simulation of Pinatubo volcanic aerosols in the stratosphere,” J. Geophys. Res. 100, 7315–7328 (1995).
    [CrossRef]
  54. T. J. McGee, P. Newman, M. Gross, U. Singh, S. Godin, A.-M. Lacoste, G. Megie, “Correlation of ozone loss with the presence of volcanic aerosols,” Geophys. Res. Lett. 21, 2801–2804 (1994).
    [CrossRef]
  55. I. S. McDermid, “NDSC and the JPL stratospheric lidars,” Rev. Laser Eng. 23, 97–103 (1995).
    [CrossRef]
  56. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
    [CrossRef]
  57. D. E. Kinnison, K. E. Grant, P. S. Connell, D. A. Rotman, D. J. Wuebbles, “The chemical and radiative effects of the Mount Pinatubo eruption,” J. Geophys. Res. 99, 25705–25731 (1994).
    [CrossRef]

1995 (5)

M. P. McCormick, L. W. Thomason, C. R. Trepte, “Atmospheric effects of the Mt. Pinatubo eruption,” Nature 373, 399–404 (1995).
[CrossRef]

H. Jäger, T. Deshler, D. J. Hofmann, “Midlatitude lidar backscatter conversions based on balloonborne aerosol measurements,” Geophys. Res. Lett. 22, 1729–1732 (1995).
[CrossRef]

J. Zhao, R. P. Turco, O. B. Toon, “A model simulation of Pinatubo volcanic aerosols in the stratosphere,” J. Geophys. Res. 100, 7315–7328 (1995).
[CrossRef]

I. S. McDermid, “NDSC and the JPL stratospheric lidars,” Rev. Laser Eng. 23, 97–103 (1995).
[CrossRef]

A. Ansmann, H. Jäger, “Retrieval of the Pinatubo-aerosol optical depth and microphysical parameters from lidar measurements,” Rev. Laser Eng. 23, 154–160 (1995).
[CrossRef]

1994 (13)

D. E. Kinnison, K. E. Grant, P. S. Connell, D. A. Rotman, D. J. Wuebbles, “The chemical and radiative effects of the Mount Pinatubo eruption,” J. Geophys. Res. 99, 25705–25731 (1994).
[CrossRef]

T. J. McGee, P. Newman, M. Gross, U. Singh, S. Godin, A.-M. Lacoste, G. Megie, “Correlation of ozone loss with the presence of volcanic aerosols,” Geophys. Res. Lett. 21, 2801–2804 (1994).
[CrossRef]

B. Stein, M. Del Guasta, J. Kolenda, M. Morandi, P. Rairoux, L. Stefanutti, J. P. Wolf, L. Wöste, “Stratospheric aerosol size distributions from multispectral lidar measurements at Sodankylä during EASOE,” Geophys. Res. Lett. 21, 1311–1314 (1994).
[CrossRef]

G. Beyerle, R. Neuber, O. Schrems, F. Wittrock, B. Knudsen, “Multiwavelength lidar measurements of stratospheric aerosols above Spitzbergen during winter 1992/93,” Geophys. Res. Lett. 21, 57–60 (1994).
[CrossRef]

A. Robock, Y. Liu, “The volcanic signal in Goddard Institute for Space Studies three-dimensional model simulations,” J. Climate 7, 44–55 (1994).
[CrossRef]

K. Labitzke, “Stratospheric temperature changes after the Pinatubo eruption,” J. Atmos. Terres. Phys. 56, 1027–1034 (1994).
[CrossRef]

H.-F. Graf, J. Perlwitz, I. Kirchner, “Northern hemisphere tropospheric midlatitude circulation after violent volcanic eruptions,” Contrib. Atmos. Phys. 67, 3–13 (1994).

K. Kodera, “Influence of volcanic eruptions on the troposphere through stratospheric dynamical processes in the northern hemisphere winter,” J. Geophys. Res. 99, 1273–1282 (1994).
[CrossRef]

E. G. Dutton, P. Reddy, S. Ryan, J. J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994).
[CrossRef]

T. Hayasaka, N. Iwasaka, G. Hashida, I. Takizawa, M. Tanaka, “Changes in stratospheric aerosols and solar insolation due to Mt. Pinatubo eruption as observed over the western Pacific,” Geophys. Res. Lett. 21, 1137–1140 (1994).
[CrossRef]

R. F. Pueschel, P. B. Russell, D. A. Allen, G. V. Ferry, K. G. Snetsinger, J. M. Livingston, S. Verma, “Physical and optical properties of the Pinatubo volcanic aerosol: aircraft observations with impactors and a sun-tracking photometer,” J. Geophys. Res. 99, 12915–12922 (1994).
[CrossRef]

J. Goodman, K. G. Snetsinger, R. F. Pueschel, G. V. Ferry, S. Verma, “Evolution of Pinatubo aerosol near 19 km altitude over western North America,” Geophys. Res. Lett. 21, 1129–1132 (1994).
[CrossRef]

J. M. Rosen, N. T. Kjome, R. L. McKenzie, J. B. Liley, “Decay of Mount Pinatubo aerosol at midlatitudes in the northern and southern hemispheres,” J. Geophys. Res. 99, 25733–25739 (1994).
[CrossRef]

1993 (15)

S. Asano, A. Uchiyama, M. Shiobara, “Spectral optical thickness and size distribution of the Pinatubo volcanic aerosols as estimated by ground-based sunphotometry,” J. Meteorol. Soc. Jpn. 71, 165–173 (1993).

R. S. Stone, J. R. Key, E. G. Dutton, “Properties and decay of stratospheric aerosols in the arctic following the 1991 eruptions of Mount Pinatubo,” Geophys. Res. Lett. 20, 2359–2362 (1993).
[CrossRef]

C. A. Brock, H. H. Jonsson, J. C. Wilson, J. E. Dye, D. Baumgardner, S. Borrmann, M. C. Pitts, M. T. Osborn, R. J. DeCoursey, D. C. Woods, “Relationships between optical extinction, backscatter and aerosol surface and volume in the stratosphere following the eruption of Mt. Pinatubo,” Geophys. Res. Lett. 20, 2555–2558 (1993).
[CrossRef]

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Pueschel, J. A. Reagan, T. E. DeFoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22969–22985 (1993).
[CrossRef]

M. Stettler, W. von Hoyningen-Huene, “Estimation of Pinatubo aerosol size distribution and its influence on spectral optical thickness measurements in Canada,” Contrib. Atmos. Phys. 66, 347–354 (1993).

H.-F. Graf, I. Kirchner, A. Robock, I. Schult, “Pinatubo eruption winter climate effects: model versus observations,” Climate Dynamics 9, 81–93 (1993).

C. R. Trepte, R. E. Veiga, M. P. McCormick, “The poleward dispersal of Mount Pinatubo volcanic aerosol,” J. Geophys. Res. 98, 18563–18573 (1993).
[CrossRef]

A. Lambert, R. G. Grainger, J. J. Remedios, C. D. Rodgers, M. Corney, F. W. Taylor, “Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAMS,” Geophys. Res. Lett. 20, 1287–1290 (1993).
[CrossRef]

M. E. Hervig, J. M. Russell, L. L. Gordley, J. H. Park, S. R. Drayson, “Observations of aerosol by the HALOE experiment onboard UARS: a preliminary validation,” Geophys. Res. Lett. 20, 1291–1294 (1993).
[CrossRef]

J. K. Angell, “Comparison of stratospheric warming following Agung, El Chichon and Pinatubo volcanic eruptions,” Geophys. Res. Lett. 20, 715–718 (1993).
[CrossRef]

P. Minnis, E. F. Harrison, L. L. Stowe, G. G. Gibson, F. M. Denn, D. R. Doelling, W. L. Smith, “Radiative climate forcing by the Mount Pinatubo eruption,” Science 259, 1411–1415 (1993).
[CrossRef] [PubMed]

J. B. Pollack, D. Rind, A. Lacis, J. E. Hansen, M. Sato, R. Ruedy, “GCM simulations of volcanic aerosol forcing. Part I: Climate changes induced by steady-state perturbations,” J. Climate 6, 1719–1742 (1993).
[CrossRef]

T. Deshler, B. J. Johnson, W. R. Rozier, “Balloonborne measurements of Pinatubo aerosol during 1991 and 1992 at 41° N: vertical profiles, size distribution, and volatility,” Geophys. Res. Lett. 20, 1435–1438 (1993).
[CrossRef]

R. D. McPeters, “The atmospheric SO2 budget for Pinatubo derived from NOAA-11 SBUV/2 spectral data,” Geophys. Res. Lett. 20, 1971–1974 (1993).
[CrossRef]

A. Ansmann, U. Wandinger, C. Weitkamp, “One-year observations of Mount-Pinatubo aerosol with an advanced Raman lidar over Germany at 53.5° N,” Geophys. Res. Lett. 20, 711–714 (1993).
[CrossRef]

1992 (17)

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November–December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992).
[CrossRef]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

L. W. Thomason, M. T. Osborn, “Lidar conversion parameters derived from SAGE II extinction measurements,” Geophys. Res. Lett. 19, 1655–1658 (1992).
[CrossRef]

G. Brasseur, C. Granier, “Mount Pinatubo aerosols, chlorofluorocarbons, and ozone depletion,” Science 257, 1239–1242 (1992).
[CrossRef] [PubMed]

L. L. Stowe, R. M. Carey, P. P. Pellegrino, “Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data,” Geophys. Res. Lett. 19, 159–162 (1992).
[CrossRef]

D. J. Hofmann, S. J. Oltmans, “The effect of stratospheric water vapor on the heterogeneous reaction rate of ClONO2 and H2O for sulfuric acid aerosol,” Geophys. Res. Lett. 19, 2211–2214 (1992).
[CrossRef]

M. P. McCormick, R. E. Veiga, “SAGE II measurements of early Pinatubo aerosols,” Geophys. Res. Lett. 19, 155–158 (1992).
[CrossRef]

G. J. S. Bluth, S. D. Doiron, A. J. Krueger, L. S. Walter, C. C. Schnetzler, “Global tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions,” Geophys. Res. Lett. 19, 151–154 (1992).
[CrossRef]

A. Robock, J. Mao, “Winter warming from large volcanic eruptions,” Geophys. Res. Lett. 19, 2405–2408 (1992).
[CrossRef]

J. Hansen, A. Lacis, R. Ruedy, M. Sato, “Potential climate impact of Mount Pinatubo eruption,” Geophys. Res. Lett. 19, 215–218 (1992).
[CrossRef]

A. Lacis, J. Hansen, M. Sato, “Climate forcing by stratospheric aerosols,” Geophys. Res. Lett. 19, 1607–1610 (1992).
[CrossRef]

P. Y. Groisman, “Possible regional climate consequences of the Pinatubo eruption: an empirical approach,” Geophys. Res. Lett. 19, 1603–1606 (1992).
[CrossRef]

E. J. Jensen, O. B. Toon, “The potential effects of volcanic aerosols on cirrus cloud microphysics,” Geophys. Res. Lett. 19, 1759–1762 (1992).
[CrossRef]

K. Sassen, “Evidence for liquid-phase cirrus cloud formation from volcanic aerosols: climatic implications,” Science 257, 516–519 (1992).
[CrossRef] [PubMed]

F. P. J. Valero, P. Pilewskie, “Latitudinal survey of spectral optical depths of the Pinatubo volcanic cloud—derived partical sizes, columnar mass loadings, and effects on planetary albedo,” Geophys. Res. Lett. 19, 163–166 (1992).
[CrossRef]

C. Granier, G. Brasseur, “Impact of heterogeneous chemistry on model predictions of ozone changes,” J. Geophys. Res. 97, 18015–18033 (1992).
[CrossRef]

1991 (3)

C. J. Grund, E. W. Eloranta, “University of Wisconsin High Spectral Resolution Lidar,” Opt. Eng. 30, 6–12 (1991).
[CrossRef]

D. J. Hofmann, T. Deshler, “Stratospheric cloud observations during formation of the antarctic ozone hole in 1989,” J. Geophys. Res. 96, 2897–2912 (1991).
[CrossRef]

H. Jäger, D. Hofmann, “Midlatitude lidar backscatter to mass, area, and extinction conversion model based on in situ measurements from 1980 to 1987,” Appl. Opt. 30, 127–138 (1991).
[CrossRef] [PubMed]

1990 (2)

S. Solomon, “Progress towards a quantitative understanding of Antarctic ozone depletion,” Nature 347, 347–354 (1990).
[CrossRef]

K. Arnold, T. Bürke, S. Qui, “Evidence for stratospheric ozone-depleting heterogeneous chemistry on volcanic aerosols from El Chichón,” Nature 348, 49–50 (1990).
[CrossRef]

1989 (1)

D. J. Hofmann, S. Solomon, “Ozone destruction through heterogeneous chemistry following the eruption of El Chichón,” J. Geophys. Res. 94, 5029–5041 (1989).
[CrossRef]

1981 (1)

H. M. Steele, P. Hamill, “Effects of temperature and humidity on the growth and optical properties of sulphuric acid–water droplets in the stratosphere,” J. Aerosol Sci. 12, 517–528 (1981).
[CrossRef]

Allen, D.

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Pueschel, J. A. Reagan, T. E. DeFoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22969–22985 (1993).
[CrossRef]

Allen, D. A.

R. F. Pueschel, P. B. Russell, D. A. Allen, G. V. Ferry, K. G. Snetsinger, J. M. Livingston, S. Verma, “Physical and optical properties of the Pinatubo volcanic aerosol: aircraft observations with impactors and a sun-tracking photometer,” J. Geophys. Res. 99, 12915–12922 (1994).
[CrossRef]

Angell, J. K.

J. K. Angell, “Comparison of stratospheric warming following Agung, El Chichon and Pinatubo volcanic eruptions,” Geophys. Res. Lett. 20, 715–718 (1993).
[CrossRef]

Ansmann, A.

A. Ansmann, H. Jäger, “Retrieval of the Pinatubo-aerosol optical depth and microphysical parameters from lidar measurements,” Rev. Laser Eng. 23, 154–160 (1995).
[CrossRef]

A. Ansmann, U. Wandinger, C. Weitkamp, “One-year observations of Mount-Pinatubo aerosol with an advanced Raman lidar over Germany at 53.5° N,” Geophys. Res. Lett. 20, 711–714 (1993).
[CrossRef]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Arnold, K.

K. Arnold, T. Bürke, S. Qui, “Evidence for stratospheric ozone-depleting heterogeneous chemistry on volcanic aerosols from El Chichón,” Nature 348, 49–50 (1990).
[CrossRef]

Asano, S.

S. Asano, A. Uchiyama, M. Shiobara, “Spectral optical thickness and size distribution of the Pinatubo volcanic aerosols as estimated by ground-based sunphotometry,” J. Meteorol. Soc. Jpn. 71, 165–173 (1993).

Baumgardner, D.

C. A. Brock, H. H. Jonsson, J. C. Wilson, J. E. Dye, D. Baumgardner, S. Borrmann, M. C. Pitts, M. T. Osborn, R. J. DeCoursey, D. C. Woods, “Relationships between optical extinction, backscatter and aerosol surface and volume in the stratosphere following the eruption of Mt. Pinatubo,” Geophys. Res. Lett. 20, 2555–2558 (1993).
[CrossRef]

Beyerle, G.

G. Beyerle, R. Neuber, O. Schrems, F. Wittrock, B. Knudsen, “Multiwavelength lidar measurements of stratospheric aerosols above Spitzbergen during winter 1992/93,” Geophys. Res. Lett. 21, 57–60 (1994).
[CrossRef]

Bluth, G. J. S.

G. J. S. Bluth, S. D. Doiron, A. J. Krueger, L. S. Walter, C. C. Schnetzler, “Global tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions,” Geophys. Res. Lett. 19, 151–154 (1992).
[CrossRef]

Borrmann, S.

C. A. Brock, H. H. Jonsson, J. C. Wilson, J. E. Dye, D. Baumgardner, S. Borrmann, M. C. Pitts, M. T. Osborn, R. J. DeCoursey, D. C. Woods, “Relationships between optical extinction, backscatter and aerosol surface and volume in the stratosphere following the eruption of Mt. Pinatubo,” Geophys. Res. Lett. 20, 2555–2558 (1993).
[CrossRef]

Box, M. A.

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Pueschel, J. A. Reagan, T. E. DeFoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22969–22985 (1993).
[CrossRef]

Brasseur, G.

C. Granier, G. Brasseur, “Impact of heterogeneous chemistry on model predictions of ozone changes,” J. Geophys. Res. 97, 18015–18033 (1992).
[CrossRef]

G. Brasseur, C. Granier, “Mount Pinatubo aerosols, chlorofluorocarbons, and ozone depletion,” Science 257, 1239–1242 (1992).
[CrossRef] [PubMed]

Brock, C. A.

C. A. Brock, H. H. Jonsson, J. C. Wilson, J. E. Dye, D. Baumgardner, S. Borrmann, M. C. Pitts, M. T. Osborn, R. J. DeCoursey, D. C. Woods, “Relationships between optical extinction, backscatter and aerosol surface and volume in the stratosphere following the eruption of Mt. Pinatubo,” Geophys. Res. Lett. 20, 2555–2558 (1993).
[CrossRef]

Bürke, T.

K. Arnold, T. Bürke, S. Qui, “Evidence for stratospheric ozone-depleting heterogeneous chemistry on volcanic aerosols from El Chichón,” Nature 348, 49–50 (1990).
[CrossRef]

Carey, R. M.

L. L. Stowe, R. M. Carey, P. P. Pellegrino, “Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data,” Geophys. Res. Lett. 19, 159–162 (1992).
[CrossRef]

Connell, P. S.

D. E. Kinnison, K. E. Grant, P. S. Connell, D. A. Rotman, D. J. Wuebbles, “The chemical and radiative effects of the Mount Pinatubo eruption,” J. Geophys. Res. 99, 25705–25731 (1994).
[CrossRef]

Corney, M.

A. Lambert, R. G. Grainger, J. J. Remedios, C. D. Rodgers, M. Corney, F. W. Taylor, “Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAMS,” Geophys. Res. Lett. 20, 1287–1290 (1993).
[CrossRef]

DeCoursey, R. J.

C. A. Brock, H. H. Jonsson, J. C. Wilson, J. E. Dye, D. Baumgardner, S. Borrmann, M. C. Pitts, M. T. Osborn, R. J. DeCoursey, D. C. Woods, “Relationships between optical extinction, backscatter and aerosol surface and volume in the stratosphere following the eruption of Mt. Pinatubo,” Geophys. Res. Lett. 20, 2555–2558 (1993).
[CrossRef]

DeFoor, T. E.

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Pueschel, J. A. Reagan, T. E. DeFoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22969–22985 (1993).
[CrossRef]

Del Guasta, M.

B. Stein, M. Del Guasta, J. Kolenda, M. Morandi, P. Rairoux, L. Stefanutti, J. P. Wolf, L. Wöste, “Stratospheric aerosol size distributions from multispectral lidar measurements at Sodankylä during EASOE,” Geophys. Res. Lett. 21, 1311–1314 (1994).
[CrossRef]

DeLuisi, J. J.

E. G. Dutton, P. Reddy, S. Ryan, J. J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994).
[CrossRef]

Denn, F. M.

P. Minnis, E. F. Harrison, L. L. Stowe, G. G. Gibson, F. M. Denn, D. R. Doelling, W. L. Smith, “Radiative climate forcing by the Mount Pinatubo eruption,” Science 259, 1411–1415 (1993).
[CrossRef] [PubMed]

Deshler, T.

H. Jäger, T. Deshler, D. J. Hofmann, “Midlatitude lidar backscatter conversions based on balloonborne aerosol measurements,” Geophys. Res. Lett. 22, 1729–1732 (1995).
[CrossRef]

T. Deshler, B. J. Johnson, W. R. Rozier, “Balloonborne measurements of Pinatubo aerosol during 1991 and 1992 at 41° N: vertical profiles, size distribution, and volatility,” Geophys. Res. Lett. 20, 1435–1438 (1993).
[CrossRef]

D. J. Hofmann, T. Deshler, “Stratospheric cloud observations during formation of the antarctic ozone hole in 1989,” J. Geophys. Res. 96, 2897–2912 (1991).
[CrossRef]

Doelling, D. R.

P. Minnis, E. F. Harrison, L. L. Stowe, G. G. Gibson, F. M. Denn, D. R. Doelling, W. L. Smith, “Radiative climate forcing by the Mount Pinatubo eruption,” Science 259, 1411–1415 (1993).
[CrossRef] [PubMed]

Doiron, S. D.

G. J. S. Bluth, S. D. Doiron, A. J. Krueger, L. S. Walter, C. C. Schnetzler, “Global tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions,” Geophys. Res. Lett. 19, 151–154 (1992).
[CrossRef]

Drayson, S. R.

M. E. Hervig, J. M. Russell, L. L. Gordley, J. H. Park, S. R. Drayson, “Observations of aerosol by the HALOE experiment onboard UARS: a preliminary validation,” Geophys. Res. Lett. 20, 1291–1294 (1993).
[CrossRef]

Dutton, E. G.

E. G. Dutton, P. Reddy, S. Ryan, J. J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994).
[CrossRef]

R. S. Stone, J. R. Key, E. G. Dutton, “Properties and decay of stratospheric aerosols in the arctic following the 1991 eruptions of Mount Pinatubo,” Geophys. Res. Lett. 20, 2359–2362 (1993).
[CrossRef]

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Pueschel, J. A. Reagan, T. E. DeFoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22969–22985 (1993).
[CrossRef]

Dye, J. E.

C. A. Brock, H. H. Jonsson, J. C. Wilson, J. E. Dye, D. Baumgardner, S. Borrmann, M. C. Pitts, M. T. Osborn, R. J. DeCoursey, D. C. Woods, “Relationships between optical extinction, backscatter and aerosol surface and volume in the stratosphere following the eruption of Mt. Pinatubo,” Geophys. Res. Lett. 20, 2555–2558 (1993).
[CrossRef]

Eloranta, E. W.

C. J. Grund, E. W. Eloranta, “University of Wisconsin High Spectral Resolution Lidar,” Opt. Eng. 30, 6–12 (1991).
[CrossRef]

Evans, K. D.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November–December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992).
[CrossRef]

Ferrare, R. A.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November–December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992).
[CrossRef]

Ferry, G. V.

R. F. Pueschel, P. B. Russell, D. A. Allen, G. V. Ferry, K. G. Snetsinger, J. M. Livingston, S. Verma, “Physical and optical properties of the Pinatubo volcanic aerosol: aircraft observations with impactors and a sun-tracking photometer,” J. Geophys. Res. 99, 12915–12922 (1994).
[CrossRef]

J. Goodman, K. G. Snetsinger, R. F. Pueschel, G. V. Ferry, S. Verma, “Evolution of Pinatubo aerosol near 19 km altitude over western North America,” Geophys. Res. Lett. 21, 1129–1132 (1994).
[CrossRef]

Gibson, G. G.

P. Minnis, E. F. Harrison, L. L. Stowe, G. G. Gibson, F. M. Denn, D. R. Doelling, W. L. Smith, “Radiative climate forcing by the Mount Pinatubo eruption,” Science 259, 1411–1415 (1993).
[CrossRef] [PubMed]

Godin, S.

T. J. McGee, P. Newman, M. Gross, U. Singh, S. Godin, A.-M. Lacoste, G. Megie, “Correlation of ozone loss with the presence of volcanic aerosols,” Geophys. Res. Lett. 21, 2801–2804 (1994).
[CrossRef]

Goodman, J.

J. Goodman, K. G. Snetsinger, R. F. Pueschel, G. V. Ferry, S. Verma, “Evolution of Pinatubo aerosol near 19 km altitude over western North America,” Geophys. Res. Lett. 21, 1129–1132 (1994).
[CrossRef]

Gordley, L. L.

M. E. Hervig, J. M. Russell, L. L. Gordley, J. H. Park, S. R. Drayson, “Observations of aerosol by the HALOE experiment onboard UARS: a preliminary validation,” Geophys. Res. Lett. 20, 1291–1294 (1993).
[CrossRef]

Graf, H.-F.

H.-F. Graf, J. Perlwitz, I. Kirchner, “Northern hemisphere tropospheric midlatitude circulation after violent volcanic eruptions,” Contrib. Atmos. Phys. 67, 3–13 (1994).

H.-F. Graf, I. Kirchner, A. Robock, I. Schult, “Pinatubo eruption winter climate effects: model versus observations,” Climate Dynamics 9, 81–93 (1993).

Grainger, R. G.

A. Lambert, R. G. Grainger, J. J. Remedios, C. D. Rodgers, M. Corney, F. W. Taylor, “Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAMS,” Geophys. Res. Lett. 20, 1287–1290 (1993).
[CrossRef]

Granier, C.

G. Brasseur, C. Granier, “Mount Pinatubo aerosols, chlorofluorocarbons, and ozone depletion,” Science 257, 1239–1242 (1992).
[CrossRef] [PubMed]

C. Granier, G. Brasseur, “Impact of heterogeneous chemistry on model predictions of ozone changes,” J. Geophys. Res. 97, 18015–18033 (1992).
[CrossRef]

Grant, K. E.

D. E. Kinnison, K. E. Grant, P. S. Connell, D. A. Rotman, D. J. Wuebbles, “The chemical and radiative effects of the Mount Pinatubo eruption,” J. Geophys. Res. 99, 25705–25731 (1994).
[CrossRef]

Groisman, P. Y.

P. Y. Groisman, “Possible regional climate consequences of the Pinatubo eruption: an empirical approach,” Geophys. Res. Lett. 19, 1603–1606 (1992).
[CrossRef]

Gross, M.

T. J. McGee, P. Newman, M. Gross, U. Singh, S. Godin, A.-M. Lacoste, G. Megie, “Correlation of ozone loss with the presence of volcanic aerosols,” Geophys. Res. Lett. 21, 2801–2804 (1994).
[CrossRef]

Grund, C. J.

C. J. Grund, E. W. Eloranta, “University of Wisconsin High Spectral Resolution Lidar,” Opt. Eng. 30, 6–12 (1991).
[CrossRef]

Hamill, P.

H. M. Steele, P. Hamill, “Effects of temperature and humidity on the growth and optical properties of sulphuric acid–water droplets in the stratosphere,” J. Aerosol Sci. 12, 517–528 (1981).
[CrossRef]

Hansen, J.

A. Lacis, J. Hansen, M. Sato, “Climate forcing by stratospheric aerosols,” Geophys. Res. Lett. 19, 1607–1610 (1992).
[CrossRef]

J. Hansen, A. Lacis, R. Ruedy, M. Sato, “Potential climate impact of Mount Pinatubo eruption,” Geophys. Res. Lett. 19, 215–218 (1992).
[CrossRef]

Hansen, J. E.

J. B. Pollack, D. Rind, A. Lacis, J. E. Hansen, M. Sato, R. Ruedy, “GCM simulations of volcanic aerosol forcing. Part I: Climate changes induced by steady-state perturbations,” J. Climate 6, 1719–1742 (1993).
[CrossRef]

Harrison, E. F.

P. Minnis, E. F. Harrison, L. L. Stowe, G. G. Gibson, F. M. Denn, D. R. Doelling, W. L. Smith, “Radiative climate forcing by the Mount Pinatubo eruption,” Science 259, 1411–1415 (1993).
[CrossRef] [PubMed]

Hashida, G.

T. Hayasaka, N. Iwasaka, G. Hashida, I. Takizawa, M. Tanaka, “Changes in stratospheric aerosols and solar insolation due to Mt. Pinatubo eruption as observed over the western Pacific,” Geophys. Res. Lett. 21, 1137–1140 (1994).
[CrossRef]

Hayasaka, T.

T. Hayasaka, N. Iwasaka, G. Hashida, I. Takizawa, M. Tanaka, “Changes in stratospheric aerosols and solar insolation due to Mt. Pinatubo eruption as observed over the western Pacific,” Geophys. Res. Lett. 21, 1137–1140 (1994).
[CrossRef]

Herman, B. M.

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Pueschel, J. A. Reagan, T. E. DeFoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22969–22985 (1993).
[CrossRef]

Hervig, M. E.

M. E. Hervig, J. M. Russell, L. L. Gordley, J. H. Park, S. R. Drayson, “Observations of aerosol by the HALOE experiment onboard UARS: a preliminary validation,” Geophys. Res. Lett. 20, 1291–1294 (1993).
[CrossRef]

Hofmann, D.

Hofmann, D. J.

H. Jäger, T. Deshler, D. J. Hofmann, “Midlatitude lidar backscatter conversions based on balloonborne aerosol measurements,” Geophys. Res. Lett. 22, 1729–1732 (1995).
[CrossRef]

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Pueschel, J. A. Reagan, T. E. DeFoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22969–22985 (1993).
[CrossRef]

D. J. Hofmann, S. J. Oltmans, “The effect of stratospheric water vapor on the heterogeneous reaction rate of ClONO2 and H2O for sulfuric acid aerosol,” Geophys. Res. Lett. 19, 2211–2214 (1992).
[CrossRef]

D. J. Hofmann, T. Deshler, “Stratospheric cloud observations during formation of the antarctic ozone hole in 1989,” J. Geophys. Res. 96, 2897–2912 (1991).
[CrossRef]

D. J. Hofmann, S. Solomon, “Ozone destruction through heterogeneous chemistry following the eruption of El Chichón,” J. Geophys. Res. 94, 5029–5041 (1989).
[CrossRef]

Iwasaka, N.

T. Hayasaka, N. Iwasaka, G. Hashida, I. Takizawa, M. Tanaka, “Changes in stratospheric aerosols and solar insolation due to Mt. Pinatubo eruption as observed over the western Pacific,” Geophys. Res. Lett. 21, 1137–1140 (1994).
[CrossRef]

Jäger, H.

H. Jäger, T. Deshler, D. J. Hofmann, “Midlatitude lidar backscatter conversions based on balloonborne aerosol measurements,” Geophys. Res. Lett. 22, 1729–1732 (1995).
[CrossRef]

A. Ansmann, H. Jäger, “Retrieval of the Pinatubo-aerosol optical depth and microphysical parameters from lidar measurements,” Rev. Laser Eng. 23, 154–160 (1995).
[CrossRef]

H. Jäger, D. Hofmann, “Midlatitude lidar backscatter to mass, area, and extinction conversion model based on in situ measurements from 1980 to 1987,” Appl. Opt. 30, 127–138 (1991).
[CrossRef] [PubMed]

Jensen, E. J.

E. J. Jensen, O. B. Toon, “The potential effects of volcanic aerosols on cirrus cloud microphysics,” Geophys. Res. Lett. 19, 1759–1762 (1992).
[CrossRef]

Johnson, B. J.

T. Deshler, B. J. Johnson, W. R. Rozier, “Balloonborne measurements of Pinatubo aerosol during 1991 and 1992 at 41° N: vertical profiles, size distribution, and volatility,” Geophys. Res. Lett. 20, 1435–1438 (1993).
[CrossRef]

Jonsson, H. H.

C. A. Brock, H. H. Jonsson, J. C. Wilson, J. E. Dye, D. Baumgardner, S. Borrmann, M. C. Pitts, M. T. Osborn, R. J. DeCoursey, D. C. Woods, “Relationships between optical extinction, backscatter and aerosol surface and volume in the stratosphere following the eruption of Mt. Pinatubo,” Geophys. Res. Lett. 20, 2555–2558 (1993).
[CrossRef]

Key, J. R.

R. S. Stone, J. R. Key, E. G. Dutton, “Properties and decay of stratospheric aerosols in the arctic following the 1991 eruptions of Mount Pinatubo,” Geophys. Res. Lett. 20, 2359–2362 (1993).
[CrossRef]

Kinne, S. A.

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Pueschel, J. A. Reagan, T. E. DeFoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22969–22985 (1993).
[CrossRef]

Kinnison, D. E.

D. E. Kinnison, K. E. Grant, P. S. Connell, D. A. Rotman, D. J. Wuebbles, “The chemical and radiative effects of the Mount Pinatubo eruption,” J. Geophys. Res. 99, 25705–25731 (1994).
[CrossRef]

Kirchner, I.

H.-F. Graf, J. Perlwitz, I. Kirchner, “Northern hemisphere tropospheric midlatitude circulation after violent volcanic eruptions,” Contrib. Atmos. Phys. 67, 3–13 (1994).

H.-F. Graf, I. Kirchner, A. Robock, I. Schult, “Pinatubo eruption winter climate effects: model versus observations,” Climate Dynamics 9, 81–93 (1993).

Kjome, N. T.

J. M. Rosen, N. T. Kjome, R. L. McKenzie, J. B. Liley, “Decay of Mount Pinatubo aerosol at midlatitudes in the northern and southern hemispheres,” J. Geophys. Res. 99, 25733–25739 (1994).
[CrossRef]

Knudsen, B.

G. Beyerle, R. Neuber, O. Schrems, F. Wittrock, B. Knudsen, “Multiwavelength lidar measurements of stratospheric aerosols above Spitzbergen during winter 1992/93,” Geophys. Res. Lett. 21, 57–60 (1994).
[CrossRef]

Kodera, K.

K. Kodera, “Influence of volcanic eruptions on the troposphere through stratospheric dynamical processes in the northern hemisphere winter,” J. Geophys. Res. 99, 1273–1282 (1994).
[CrossRef]

Kolenda, J.

B. Stein, M. Del Guasta, J. Kolenda, M. Morandi, P. Rairoux, L. Stefanutti, J. P. Wolf, L. Wöste, “Stratospheric aerosol size distributions from multispectral lidar measurements at Sodankylä during EASOE,” Geophys. Res. Lett. 21, 1311–1314 (1994).
[CrossRef]

Krueger, A. J.

G. J. S. Bluth, S. D. Doiron, A. J. Krueger, L. S. Walter, C. C. Schnetzler, “Global tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions,” Geophys. Res. Lett. 19, 151–154 (1992).
[CrossRef]

Labitzke, K.

K. Labitzke, “Stratospheric temperature changes after the Pinatubo eruption,” J. Atmos. Terres. Phys. 56, 1027–1034 (1994).
[CrossRef]

Lacis, A.

J. B. Pollack, D. Rind, A. Lacis, J. E. Hansen, M. Sato, R. Ruedy, “GCM simulations of volcanic aerosol forcing. Part I: Climate changes induced by steady-state perturbations,” J. Climate 6, 1719–1742 (1993).
[CrossRef]

J. Hansen, A. Lacis, R. Ruedy, M. Sato, “Potential climate impact of Mount Pinatubo eruption,” Geophys. Res. Lett. 19, 215–218 (1992).
[CrossRef]

A. Lacis, J. Hansen, M. Sato, “Climate forcing by stratospheric aerosols,” Geophys. Res. Lett. 19, 1607–1610 (1992).
[CrossRef]

Lacoste, A.-M.

T. J. McGee, P. Newman, M. Gross, U. Singh, S. Godin, A.-M. Lacoste, G. Megie, “Correlation of ozone loss with the presence of volcanic aerosols,” Geophys. Res. Lett. 21, 2801–2804 (1994).
[CrossRef]

Lahmann, W.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Lambert, A.

A. Lambert, R. G. Grainger, J. J. Remedios, C. D. Rodgers, M. Corney, F. W. Taylor, “Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAMS,” Geophys. Res. Lett. 20, 1287–1290 (1993).
[CrossRef]

Liley, J. B.

J. M. Rosen, N. T. Kjome, R. L. McKenzie, J. B. Liley, “Decay of Mount Pinatubo aerosol at midlatitudes in the northern and southern hemispheres,” J. Geophys. Res. 99, 25733–25739 (1994).
[CrossRef]

Liu, Y.

A. Robock, Y. Liu, “The volcanic signal in Goddard Institute for Space Studies three-dimensional model simulations,” J. Climate 7, 44–55 (1994).
[CrossRef]

Livingston, J. M.

R. F. Pueschel, P. B. Russell, D. A. Allen, G. V. Ferry, K. G. Snetsinger, J. M. Livingston, S. Verma, “Physical and optical properties of the Pinatubo volcanic aerosol: aircraft observations with impactors and a sun-tracking photometer,” J. Geophys. Res. 99, 12915–12922 (1994).
[CrossRef]

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Pueschel, J. A. Reagan, T. E. DeFoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22969–22985 (1993).
[CrossRef]

Mao, J.

A. Robock, J. Mao, “Winter warming from large volcanic eruptions,” Geophys. Res. Lett. 19, 2405–2408 (1992).
[CrossRef]

McCormick, M. P.

M. P. McCormick, L. W. Thomason, C. R. Trepte, “Atmospheric effects of the Mt. Pinatubo eruption,” Nature 373, 399–404 (1995).
[CrossRef]

C. R. Trepte, R. E. Veiga, M. P. McCormick, “The poleward dispersal of Mount Pinatubo volcanic aerosol,” J. Geophys. Res. 98, 18563–18573 (1993).
[CrossRef]

M. P. McCormick, R. E. Veiga, “SAGE II measurements of early Pinatubo aerosols,” Geophys. Res. Lett. 19, 155–158 (1992).
[CrossRef]

McDermid, I. S.

I. S. McDermid, “NDSC and the JPL stratospheric lidars,” Rev. Laser Eng. 23, 97–103 (1995).
[CrossRef]

McGee, T. J.

T. J. McGee, P. Newman, M. Gross, U. Singh, S. Godin, A.-M. Lacoste, G. Megie, “Correlation of ozone loss with the presence of volcanic aerosols,” Geophys. Res. Lett. 21, 2801–2804 (1994).
[CrossRef]

McKenzie, R. L.

J. M. Rosen, N. T. Kjome, R. L. McKenzie, J. B. Liley, “Decay of Mount Pinatubo aerosol at midlatitudes in the northern and southern hemispheres,” J. Geophys. Res. 99, 25733–25739 (1994).
[CrossRef]

McPeters, R. D.

R. D. McPeters, “The atmospheric SO2 budget for Pinatubo derived from NOAA-11 SBUV/2 spectral data,” Geophys. Res. Lett. 20, 1971–1974 (1993).
[CrossRef]

Megie, G.

T. J. McGee, P. Newman, M. Gross, U. Singh, S. Godin, A.-M. Lacoste, G. Megie, “Correlation of ozone loss with the presence of volcanic aerosols,” Geophys. Res. Lett. 21, 2801–2804 (1994).
[CrossRef]

Melfi, S. H.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November–December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992).
[CrossRef]

Michaelis, W.

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Minnis, P.

P. Minnis, E. F. Harrison, L. L. Stowe, G. G. Gibson, F. M. Denn, D. R. Doelling, W. L. Smith, “Radiative climate forcing by the Mount Pinatubo eruption,” Science 259, 1411–1415 (1993).
[CrossRef] [PubMed]

Morandi, M.

B. Stein, M. Del Guasta, J. Kolenda, M. Morandi, P. Rairoux, L. Stefanutti, J. P. Wolf, L. Wöste, “Stratospheric aerosol size distributions from multispectral lidar measurements at Sodankylä during EASOE,” Geophys. Res. Lett. 21, 1311–1314 (1994).
[CrossRef]

Neuber, R.

G. Beyerle, R. Neuber, O. Schrems, F. Wittrock, B. Knudsen, “Multiwavelength lidar measurements of stratospheric aerosols above Spitzbergen during winter 1992/93,” Geophys. Res. Lett. 21, 57–60 (1994).
[CrossRef]

Newman, P.

T. J. McGee, P. Newman, M. Gross, U. Singh, S. Godin, A.-M. Lacoste, G. Megie, “Correlation of ozone loss with the presence of volcanic aerosols,” Geophys. Res. Lett. 21, 2801–2804 (1994).
[CrossRef]

Oltmans, S. J.

D. J. Hofmann, S. J. Oltmans, “The effect of stratospheric water vapor on the heterogeneous reaction rate of ClONO2 and H2O for sulfuric acid aerosol,” Geophys. Res. Lett. 19, 2211–2214 (1992).
[CrossRef]

Osborn, M. T.

C. A. Brock, H. H. Jonsson, J. C. Wilson, J. E. Dye, D. Baumgardner, S. Borrmann, M. C. Pitts, M. T. Osborn, R. J. DeCoursey, D. C. Woods, “Relationships between optical extinction, backscatter and aerosol surface and volume in the stratosphere following the eruption of Mt. Pinatubo,” Geophys. Res. Lett. 20, 2555–2558 (1993).
[CrossRef]

L. W. Thomason, M. T. Osborn, “Lidar conversion parameters derived from SAGE II extinction measurements,” Geophys. Res. Lett. 19, 1655–1658 (1992).
[CrossRef]

Park, J. H.

M. E. Hervig, J. M. Russell, L. L. Gordley, J. H. Park, S. R. Drayson, “Observations of aerosol by the HALOE experiment onboard UARS: a preliminary validation,” Geophys. Res. Lett. 20, 1291–1294 (1993).
[CrossRef]

Pellegrino, P. P.

L. L. Stowe, R. M. Carey, P. P. Pellegrino, “Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data,” Geophys. Res. Lett. 19, 159–162 (1992).
[CrossRef]

Perlwitz, J.

H.-F. Graf, J. Perlwitz, I. Kirchner, “Northern hemisphere tropospheric midlatitude circulation after violent volcanic eruptions,” Contrib. Atmos. Phys. 67, 3–13 (1994).

Pilewski, P.

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Pueschel, J. A. Reagan, T. E. DeFoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22969–22985 (1993).
[CrossRef]

Pilewskie, P.

F. P. J. Valero, P. Pilewskie, “Latitudinal survey of spectral optical depths of the Pinatubo volcanic cloud—derived partical sizes, columnar mass loadings, and effects on planetary albedo,” Geophys. Res. Lett. 19, 163–166 (1992).
[CrossRef]

Pitts, M. C.

C. A. Brock, H. H. Jonsson, J. C. Wilson, J. E. Dye, D. Baumgardner, S. Borrmann, M. C. Pitts, M. T. Osborn, R. J. DeCoursey, D. C. Woods, “Relationships between optical extinction, backscatter and aerosol surface and volume in the stratosphere following the eruption of Mt. Pinatubo,” Geophys. Res. Lett. 20, 2555–2558 (1993).
[CrossRef]

Pollack, J. B.

J. B. Pollack, D. Rind, A. Lacis, J. E. Hansen, M. Sato, R. Ruedy, “GCM simulations of volcanic aerosol forcing. Part I: Climate changes induced by steady-state perturbations,” J. Climate 6, 1719–1742 (1993).
[CrossRef]

Pueschel, R. F.

J. Goodman, K. G. Snetsinger, R. F. Pueschel, G. V. Ferry, S. Verma, “Evolution of Pinatubo aerosol near 19 km altitude over western North America,” Geophys. Res. Lett. 21, 1129–1132 (1994).
[CrossRef]

R. F. Pueschel, P. B. Russell, D. A. Allen, G. V. Ferry, K. G. Snetsinger, J. M. Livingston, S. Verma, “Physical and optical properties of the Pinatubo volcanic aerosol: aircraft observations with impactors and a sun-tracking photometer,” J. Geophys. Res. 99, 12915–12922 (1994).
[CrossRef]

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Pueschel, J. A. Reagan, T. E. DeFoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22969–22985 (1993).
[CrossRef]

Qui, S.

K. Arnold, T. Bürke, S. Qui, “Evidence for stratospheric ozone-depleting heterogeneous chemistry on volcanic aerosols from El Chichón,” Nature 348, 49–50 (1990).
[CrossRef]

Rairoux, P.

B. Stein, M. Del Guasta, J. Kolenda, M. Morandi, P. Rairoux, L. Stefanutti, J. P. Wolf, L. Wöste, “Stratospheric aerosol size distributions from multispectral lidar measurements at Sodankylä during EASOE,” Geophys. Res. Lett. 21, 1311–1314 (1994).
[CrossRef]

Reagan, J. A.

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Pueschel, J. A. Reagan, T. E. DeFoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22969–22985 (1993).
[CrossRef]

Reddy, P.

E. G. Dutton, P. Reddy, S. Ryan, J. J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994).
[CrossRef]

Remedios, J. J.

A. Lambert, R. G. Grainger, J. J. Remedios, C. D. Rodgers, M. Corney, F. W. Taylor, “Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAMS,” Geophys. Res. Lett. 20, 1287–1290 (1993).
[CrossRef]

Riebesell, M.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

Rind, D.

J. B. Pollack, D. Rind, A. Lacis, J. E. Hansen, M. Sato, R. Ruedy, “GCM simulations of volcanic aerosol forcing. Part I: Climate changes induced by steady-state perturbations,” J. Climate 6, 1719–1742 (1993).
[CrossRef]

Robock, A.

A. Robock, Y. Liu, “The volcanic signal in Goddard Institute for Space Studies three-dimensional model simulations,” J. Climate 7, 44–55 (1994).
[CrossRef]

H.-F. Graf, I. Kirchner, A. Robock, I. Schult, “Pinatubo eruption winter climate effects: model versus observations,” Climate Dynamics 9, 81–93 (1993).

A. Robock, J. Mao, “Winter warming from large volcanic eruptions,” Geophys. Res. Lett. 19, 2405–2408 (1992).
[CrossRef]

Rodgers, C. D.

A. Lambert, R. G. Grainger, J. J. Remedios, C. D. Rodgers, M. Corney, F. W. Taylor, “Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAMS,” Geophys. Res. Lett. 20, 1287–1290 (1993).
[CrossRef]

Rosen, J. M.

J. M. Rosen, N. T. Kjome, R. L. McKenzie, J. B. Liley, “Decay of Mount Pinatubo aerosol at midlatitudes in the northern and southern hemispheres,” J. Geophys. Res. 99, 25733–25739 (1994).
[CrossRef]

Rotman, D. A.

D. E. Kinnison, K. E. Grant, P. S. Connell, D. A. Rotman, D. J. Wuebbles, “The chemical and radiative effects of the Mount Pinatubo eruption,” J. Geophys. Res. 99, 25705–25731 (1994).
[CrossRef]

Rozier, W. R.

T. Deshler, B. J. Johnson, W. R. Rozier, “Balloonborne measurements of Pinatubo aerosol during 1991 and 1992 at 41° N: vertical profiles, size distribution, and volatility,” Geophys. Res. Lett. 20, 1435–1438 (1993).
[CrossRef]

Ruedy, R.

J. B. Pollack, D. Rind, A. Lacis, J. E. Hansen, M. Sato, R. Ruedy, “GCM simulations of volcanic aerosol forcing. Part I: Climate changes induced by steady-state perturbations,” J. Climate 6, 1719–1742 (1993).
[CrossRef]

J. Hansen, A. Lacis, R. Ruedy, M. Sato, “Potential climate impact of Mount Pinatubo eruption,” Geophys. Res. Lett. 19, 215–218 (1992).
[CrossRef]

Russell, J. M.

M. E. Hervig, J. M. Russell, L. L. Gordley, J. H. Park, S. R. Drayson, “Observations of aerosol by the HALOE experiment onboard UARS: a preliminary validation,” Geophys. Res. Lett. 20, 1291–1294 (1993).
[CrossRef]

Russell, P. B.

R. F. Pueschel, P. B. Russell, D. A. Allen, G. V. Ferry, K. G. Snetsinger, J. M. Livingston, S. Verma, “Physical and optical properties of the Pinatubo volcanic aerosol: aircraft observations with impactors and a sun-tracking photometer,” J. Geophys. Res. 99, 12915–12922 (1994).
[CrossRef]

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Pueschel, J. A. Reagan, T. E. DeFoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22969–22985 (1993).
[CrossRef]

Ryan, S.

E. G. Dutton, P. Reddy, S. Ryan, J. J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994).
[CrossRef]

Sassen, K.

K. Sassen, “Evidence for liquid-phase cirrus cloud formation from volcanic aerosols: climatic implications,” Science 257, 516–519 (1992).
[CrossRef] [PubMed]

Sato, M.

J. B. Pollack, D. Rind, A. Lacis, J. E. Hansen, M. Sato, R. Ruedy, “GCM simulations of volcanic aerosol forcing. Part I: Climate changes induced by steady-state perturbations,” J. Climate 6, 1719–1742 (1993).
[CrossRef]

J. Hansen, A. Lacis, R. Ruedy, M. Sato, “Potential climate impact of Mount Pinatubo eruption,” Geophys. Res. Lett. 19, 215–218 (1992).
[CrossRef]

A. Lacis, J. Hansen, M. Sato, “Climate forcing by stratospheric aerosols,” Geophys. Res. Lett. 19, 1607–1610 (1992).
[CrossRef]

Schnetzler, C. C.

G. J. S. Bluth, S. D. Doiron, A. J. Krueger, L. S. Walter, C. C. Schnetzler, “Global tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions,” Geophys. Res. Lett. 19, 151–154 (1992).
[CrossRef]

Schrems, O.

G. Beyerle, R. Neuber, O. Schrems, F. Wittrock, B. Knudsen, “Multiwavelength lidar measurements of stratospheric aerosols above Spitzbergen during winter 1992/93,” Geophys. Res. Lett. 21, 57–60 (1994).
[CrossRef]

Schult, I.

H.-F. Graf, I. Kirchner, A. Robock, I. Schult, “Pinatubo eruption winter climate effects: model versus observations,” Climate Dynamics 9, 81–93 (1993).

Shiobara, M.

S. Asano, A. Uchiyama, M. Shiobara, “Spectral optical thickness and size distribution of the Pinatubo volcanic aerosols as estimated by ground-based sunphotometry,” J. Meteorol. Soc. Jpn. 71, 165–173 (1993).

Singh, U.

T. J. McGee, P. Newman, M. Gross, U. Singh, S. Godin, A.-M. Lacoste, G. Megie, “Correlation of ozone loss with the presence of volcanic aerosols,” Geophys. Res. Lett. 21, 2801–2804 (1994).
[CrossRef]

Smith, W. L.

P. Minnis, E. F. Harrison, L. L. Stowe, G. G. Gibson, F. M. Denn, D. R. Doelling, W. L. Smith, “Radiative climate forcing by the Mount Pinatubo eruption,” Science 259, 1411–1415 (1993).
[CrossRef] [PubMed]

Snetsinger, K. G.

R. F. Pueschel, P. B. Russell, D. A. Allen, G. V. Ferry, K. G. Snetsinger, J. M. Livingston, S. Verma, “Physical and optical properties of the Pinatubo volcanic aerosol: aircraft observations with impactors and a sun-tracking photometer,” J. Geophys. Res. 99, 12915–12922 (1994).
[CrossRef]

J. Goodman, K. G. Snetsinger, R. F. Pueschel, G. V. Ferry, S. Verma, “Evolution of Pinatubo aerosol near 19 km altitude over western North America,” Geophys. Res. Lett. 21, 1129–1132 (1994).
[CrossRef]

Solomon, S.

S. Solomon, “Progress towards a quantitative understanding of Antarctic ozone depletion,” Nature 347, 347–354 (1990).
[CrossRef]

D. J. Hofmann, S. Solomon, “Ozone destruction through heterogeneous chemistry following the eruption of El Chichón,” J. Geophys. Res. 94, 5029–5041 (1989).
[CrossRef]

Steele, H. M.

H. M. Steele, P. Hamill, “Effects of temperature and humidity on the growth and optical properties of sulphuric acid–water droplets in the stratosphere,” J. Aerosol Sci. 12, 517–528 (1981).
[CrossRef]

Stefanutti, L.

B. Stein, M. Del Guasta, J. Kolenda, M. Morandi, P. Rairoux, L. Stefanutti, J. P. Wolf, L. Wöste, “Stratospheric aerosol size distributions from multispectral lidar measurements at Sodankylä during EASOE,” Geophys. Res. Lett. 21, 1311–1314 (1994).
[CrossRef]

Stein, B.

B. Stein, M. Del Guasta, J. Kolenda, M. Morandi, P. Rairoux, L. Stefanutti, J. P. Wolf, L. Wöste, “Stratospheric aerosol size distributions from multispectral lidar measurements at Sodankylä during EASOE,” Geophys. Res. Lett. 21, 1311–1314 (1994).
[CrossRef]

Stettler, M.

M. Stettler, W. von Hoyningen-Huene, “Estimation of Pinatubo aerosol size distribution and its influence on spectral optical thickness measurements in Canada,” Contrib. Atmos. Phys. 66, 347–354 (1993).

Stone, R. S.

R. S. Stone, J. R. Key, E. G. Dutton, “Properties and decay of stratospheric aerosols in the arctic following the 1991 eruptions of Mount Pinatubo,” Geophys. Res. Lett. 20, 2359–2362 (1993).
[CrossRef]

Stowe, L. L.

P. Minnis, E. F. Harrison, L. L. Stowe, G. G. Gibson, F. M. Denn, D. R. Doelling, W. L. Smith, “Radiative climate forcing by the Mount Pinatubo eruption,” Science 259, 1411–1415 (1993).
[CrossRef] [PubMed]

L. L. Stowe, R. M. Carey, P. P. Pellegrino, “Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data,” Geophys. Res. Lett. 19, 159–162 (1992).
[CrossRef]

Takizawa, I.

T. Hayasaka, N. Iwasaka, G. Hashida, I. Takizawa, M. Tanaka, “Changes in stratospheric aerosols and solar insolation due to Mt. Pinatubo eruption as observed over the western Pacific,” Geophys. Res. Lett. 21, 1137–1140 (1994).
[CrossRef]

Tanaka, M.

T. Hayasaka, N. Iwasaka, G. Hashida, I. Takizawa, M. Tanaka, “Changes in stratospheric aerosols and solar insolation due to Mt. Pinatubo eruption as observed over the western Pacific,” Geophys. Res. Lett. 21, 1137–1140 (1994).
[CrossRef]

Taylor, F. W.

A. Lambert, R. G. Grainger, J. J. Remedios, C. D. Rodgers, M. Corney, F. W. Taylor, “Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAMS,” Geophys. Res. Lett. 20, 1287–1290 (1993).
[CrossRef]

Thomason, L. W.

M. P. McCormick, L. W. Thomason, C. R. Trepte, “Atmospheric effects of the Mt. Pinatubo eruption,” Nature 373, 399–404 (1995).
[CrossRef]

L. W. Thomason, M. T. Osborn, “Lidar conversion parameters derived from SAGE II extinction measurements,” Geophys. Res. Lett. 19, 1655–1658 (1992).
[CrossRef]

Toon, O. B.

J. Zhao, R. P. Turco, O. B. Toon, “A model simulation of Pinatubo volcanic aerosols in the stratosphere,” J. Geophys. Res. 100, 7315–7328 (1995).
[CrossRef]

E. J. Jensen, O. B. Toon, “The potential effects of volcanic aerosols on cirrus cloud microphysics,” Geophys. Res. Lett. 19, 1759–1762 (1992).
[CrossRef]

Trepte, C. R.

M. P. McCormick, L. W. Thomason, C. R. Trepte, “Atmospheric effects of the Mt. Pinatubo eruption,” Nature 373, 399–404 (1995).
[CrossRef]

C. R. Trepte, R. E. Veiga, M. P. McCormick, “The poleward dispersal of Mount Pinatubo volcanic aerosol,” J. Geophys. Res. 98, 18563–18573 (1993).
[CrossRef]

Turco, R. P.

J. Zhao, R. P. Turco, O. B. Toon, “A model simulation of Pinatubo volcanic aerosols in the stratosphere,” J. Geophys. Res. 100, 7315–7328 (1995).
[CrossRef]

Uchiyama, A.

S. Asano, A. Uchiyama, M. Shiobara, “Spectral optical thickness and size distribution of the Pinatubo volcanic aerosols as estimated by ground-based sunphotometry,” J. Meteorol. Soc. Jpn. 71, 165–173 (1993).

Valero, F. P. J.

F. P. J. Valero, P. Pilewskie, “Latitudinal survey of spectral optical depths of the Pinatubo volcanic cloud—derived partical sizes, columnar mass loadings, and effects on planetary albedo,” Geophys. Res. Lett. 19, 163–166 (1992).
[CrossRef]

Veiga, R. E.

C. R. Trepte, R. E. Veiga, M. P. McCormick, “The poleward dispersal of Mount Pinatubo volcanic aerosol,” J. Geophys. Res. 98, 18563–18573 (1993).
[CrossRef]

M. P. McCormick, R. E. Veiga, “SAGE II measurements of early Pinatubo aerosols,” Geophys. Res. Lett. 19, 155–158 (1992).
[CrossRef]

Verma, S.

J. Goodman, K. G. Snetsinger, R. F. Pueschel, G. V. Ferry, S. Verma, “Evolution of Pinatubo aerosol near 19 km altitude over western North America,” Geophys. Res. Lett. 21, 1129–1132 (1994).
[CrossRef]

R. F. Pueschel, P. B. Russell, D. A. Allen, G. V. Ferry, K. G. Snetsinger, J. M. Livingston, S. Verma, “Physical and optical properties of the Pinatubo volcanic aerosol: aircraft observations with impactors and a sun-tracking photometer,” J. Geophys. Res. 99, 12915–12922 (1994).
[CrossRef]

von Hoyningen-Huene, W.

M. Stettler, W. von Hoyningen-Huene, “Estimation of Pinatubo aerosol size distribution and its influence on spectral optical thickness measurements in Canada,” Contrib. Atmos. Phys. 66, 347–354 (1993).

Voss, E.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Walter, L. S.

G. J. S. Bluth, S. D. Doiron, A. J. Krueger, L. S. Walter, C. C. Schnetzler, “Global tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions,” Geophys. Res. Lett. 19, 151–154 (1992).
[CrossRef]

Wandinger, U.

A. Ansmann, U. Wandinger, C. Weitkamp, “One-year observations of Mount-Pinatubo aerosol with an advanced Raman lidar over Germany at 53.5° N,” Geophys. Res. Lett. 20, 711–714 (1993).
[CrossRef]

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

Weitkamp, C.

A. Ansmann, U. Wandinger, C. Weitkamp, “One-year observations of Mount-Pinatubo aerosol with an advanced Raman lidar over Germany at 53.5° N,” Geophys. Res. Lett. 20, 711–714 (1993).
[CrossRef]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Whiteman, D. N.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November–December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992).
[CrossRef]

Wilson, J. C.

C. A. Brock, H. H. Jonsson, J. C. Wilson, J. E. Dye, D. Baumgardner, S. Borrmann, M. C. Pitts, M. T. Osborn, R. J. DeCoursey, D. C. Woods, “Relationships between optical extinction, backscatter and aerosol surface and volume in the stratosphere following the eruption of Mt. Pinatubo,” Geophys. Res. Lett. 20, 2555–2558 (1993).
[CrossRef]

Wittrock, F.

G. Beyerle, R. Neuber, O. Schrems, F. Wittrock, B. Knudsen, “Multiwavelength lidar measurements of stratospheric aerosols above Spitzbergen during winter 1992/93,” Geophys. Res. Lett. 21, 57–60 (1994).
[CrossRef]

Wolf, J. P.

B. Stein, M. Del Guasta, J. Kolenda, M. Morandi, P. Rairoux, L. Stefanutti, J. P. Wolf, L. Wöste, “Stratospheric aerosol size distributions from multispectral lidar measurements at Sodankylä during EASOE,” Geophys. Res. Lett. 21, 1311–1314 (1994).
[CrossRef]

Woods, D. C.

C. A. Brock, H. H. Jonsson, J. C. Wilson, J. E. Dye, D. Baumgardner, S. Borrmann, M. C. Pitts, M. T. Osborn, R. J. DeCoursey, D. C. Woods, “Relationships between optical extinction, backscatter and aerosol surface and volume in the stratosphere following the eruption of Mt. Pinatubo,” Geophys. Res. Lett. 20, 2555–2558 (1993).
[CrossRef]

Wöste, L.

B. Stein, M. Del Guasta, J. Kolenda, M. Morandi, P. Rairoux, L. Stefanutti, J. P. Wolf, L. Wöste, “Stratospheric aerosol size distributions from multispectral lidar measurements at Sodankylä during EASOE,” Geophys. Res. Lett. 21, 1311–1314 (1994).
[CrossRef]

Wuebbles, D. J.

D. E. Kinnison, K. E. Grant, P. S. Connell, D. A. Rotman, D. J. Wuebbles, “The chemical and radiative effects of the Mount Pinatubo eruption,” J. Geophys. Res. 99, 25705–25731 (1994).
[CrossRef]

Zhao, J.

J. Zhao, R. P. Turco, O. B. Toon, “A model simulation of Pinatubo volcanic aerosols in the stratosphere,” J. Geophys. Res. 100, 7315–7328 (1995).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Climate Dynamics (1)

H.-F. Graf, I. Kirchner, A. Robock, I. Schult, “Pinatubo eruption winter climate effects: model versus observations,” Climate Dynamics 9, 81–93 (1993).

Contrib. Atmos. Phys. (2)

H.-F. Graf, J. Perlwitz, I. Kirchner, “Northern hemisphere tropospheric midlatitude circulation after violent volcanic eruptions,” Contrib. Atmos. Phys. 67, 3–13 (1994).

M. Stettler, W. von Hoyningen-Huene, “Estimation of Pinatubo aerosol size distribution and its influence on spectral optical thickness measurements in Canada,” Contrib. Atmos. Phys. 66, 347–354 (1993).

Geophys. Res. Lett. (26)

T. Hayasaka, N. Iwasaka, G. Hashida, I. Takizawa, M. Tanaka, “Changes in stratospheric aerosols and solar insolation due to Mt. Pinatubo eruption as observed over the western Pacific,” Geophys. Res. Lett. 21, 1137–1140 (1994).
[CrossRef]

L. L. Stowe, R. M. Carey, P. P. Pellegrino, “Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data,” Geophys. Res. Lett. 19, 159–162 (1992).
[CrossRef]

R. S. Stone, J. R. Key, E. G. Dutton, “Properties and decay of stratospheric aerosols in the arctic following the 1991 eruptions of Mount Pinatubo,” Geophys. Res. Lett. 20, 2359–2362 (1993).
[CrossRef]

C. A. Brock, H. H. Jonsson, J. C. Wilson, J. E. Dye, D. Baumgardner, S. Borrmann, M. C. Pitts, M. T. Osborn, R. J. DeCoursey, D. C. Woods, “Relationships between optical extinction, backscatter and aerosol surface and volume in the stratosphere following the eruption of Mt. Pinatubo,” Geophys. Res. Lett. 20, 2555–2558 (1993).
[CrossRef]

A. Lambert, R. G. Grainger, J. J. Remedios, C. D. Rodgers, M. Corney, F. W. Taylor, “Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAMS,” Geophys. Res. Lett. 20, 1287–1290 (1993).
[CrossRef]

M. E. Hervig, J. M. Russell, L. L. Gordley, J. H. Park, S. R. Drayson, “Observations of aerosol by the HALOE experiment onboard UARS: a preliminary validation,” Geophys. Res. Lett. 20, 1291–1294 (1993).
[CrossRef]

F. P. J. Valero, P. Pilewskie, “Latitudinal survey of spectral optical depths of the Pinatubo volcanic cloud—derived partical sizes, columnar mass loadings, and effects on planetary albedo,” Geophys. Res. Lett. 19, 163–166 (1992).
[CrossRef]

E. J. Jensen, O. B. Toon, “The potential effects of volcanic aerosols on cirrus cloud microphysics,” Geophys. Res. Lett. 19, 1759–1762 (1992).
[CrossRef]

J. K. Angell, “Comparison of stratospheric warming following Agung, El Chichon and Pinatubo volcanic eruptions,” Geophys. Res. Lett. 20, 715–718 (1993).
[CrossRef]

P. Y. Groisman, “Possible regional climate consequences of the Pinatubo eruption: an empirical approach,” Geophys. Res. Lett. 19, 1603–1606 (1992).
[CrossRef]

T. Deshler, B. J. Johnson, W. R. Rozier, “Balloonborne measurements of Pinatubo aerosol during 1991 and 1992 at 41° N: vertical profiles, size distribution, and volatility,” Geophys. Res. Lett. 20, 1435–1438 (1993).
[CrossRef]

G. J. S. Bluth, S. D. Doiron, A. J. Krueger, L. S. Walter, C. C. Schnetzler, “Global tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions,” Geophys. Res. Lett. 19, 151–154 (1992).
[CrossRef]

R. D. McPeters, “The atmospheric SO2 budget for Pinatubo derived from NOAA-11 SBUV/2 spectral data,” Geophys. Res. Lett. 20, 1971–1974 (1993).
[CrossRef]

M. P. McCormick, R. E. Veiga, “SAGE II measurements of early Pinatubo aerosols,” Geophys. Res. Lett. 19, 155–158 (1992).
[CrossRef]

J. Hansen, A. Lacis, R. Ruedy, M. Sato, “Potential climate impact of Mount Pinatubo eruption,” Geophys. Res. Lett. 19, 215–218 (1992).
[CrossRef]

A. Lacis, J. Hansen, M. Sato, “Climate forcing by stratospheric aerosols,” Geophys. Res. Lett. 19, 1607–1610 (1992).
[CrossRef]

A. Robock, J. Mao, “Winter warming from large volcanic eruptions,” Geophys. Res. Lett. 19, 2405–2408 (1992).
[CrossRef]

T. J. McGee, P. Newman, M. Gross, U. Singh, S. Godin, A.-M. Lacoste, G. Megie, “Correlation of ozone loss with the presence of volcanic aerosols,” Geophys. Res. Lett. 21, 2801–2804 (1994).
[CrossRef]

A. Ansmann, U. Wandinger, C. Weitkamp, “One-year observations of Mount-Pinatubo aerosol with an advanced Raman lidar over Germany at 53.5° N,” Geophys. Res. Lett. 20, 711–714 (1993).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November–December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992).
[CrossRef]

H. Jäger, T. Deshler, D. J. Hofmann, “Midlatitude lidar backscatter conversions based on balloonborne aerosol measurements,” Geophys. Res. Lett. 22, 1729–1732 (1995).
[CrossRef]

L. W. Thomason, M. T. Osborn, “Lidar conversion parameters derived from SAGE II extinction measurements,” Geophys. Res. Lett. 19, 1655–1658 (1992).
[CrossRef]

B. Stein, M. Del Guasta, J. Kolenda, M. Morandi, P. Rairoux, L. Stefanutti, J. P. Wolf, L. Wöste, “Stratospheric aerosol size distributions from multispectral lidar measurements at Sodankylä during EASOE,” Geophys. Res. Lett. 21, 1311–1314 (1994).
[CrossRef]

G. Beyerle, R. Neuber, O. Schrems, F. Wittrock, B. Knudsen, “Multiwavelength lidar measurements of stratospheric aerosols above Spitzbergen during winter 1992/93,” Geophys. Res. Lett. 21, 57–60 (1994).
[CrossRef]

J. Goodman, K. G. Snetsinger, R. F. Pueschel, G. V. Ferry, S. Verma, “Evolution of Pinatubo aerosol near 19 km altitude over western North America,” Geophys. Res. Lett. 21, 1129–1132 (1994).
[CrossRef]

D. J. Hofmann, S. J. Oltmans, “The effect of stratospheric water vapor on the heterogeneous reaction rate of ClONO2 and H2O for sulfuric acid aerosol,” Geophys. Res. Lett. 19, 2211–2214 (1992).
[CrossRef]

J. Aerosol Sci. (1)

H. M. Steele, P. Hamill, “Effects of temperature and humidity on the growth and optical properties of sulphuric acid–water droplets in the stratosphere,” J. Aerosol Sci. 12, 517–528 (1981).
[CrossRef]

J. Atmos. Terres. Phys. (1)

K. Labitzke, “Stratospheric temperature changes after the Pinatubo eruption,” J. Atmos. Terres. Phys. 56, 1027–1034 (1994).
[CrossRef]

J. Climate (2)

A. Robock, Y. Liu, “The volcanic signal in Goddard Institute for Space Studies three-dimensional model simulations,” J. Climate 7, 44–55 (1994).
[CrossRef]

J. B. Pollack, D. Rind, A. Lacis, J. E. Hansen, M. Sato, R. Ruedy, “GCM simulations of volcanic aerosol forcing. Part I: Climate changes induced by steady-state perturbations,” J. Climate 6, 1719–1742 (1993).
[CrossRef]

J. Geophys. Res. (11)

K. Kodera, “Influence of volcanic eruptions on the troposphere through stratospheric dynamical processes in the northern hemisphere winter,” J. Geophys. Res. 99, 1273–1282 (1994).
[CrossRef]

D. J. Hofmann, S. Solomon, “Ozone destruction through heterogeneous chemistry following the eruption of El Chichón,” J. Geophys. Res. 94, 5029–5041 (1989).
[CrossRef]

C. Granier, G. Brasseur, “Impact of heterogeneous chemistry on model predictions of ozone changes,” J. Geophys. Res. 97, 18015–18033 (1992).
[CrossRef]

P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Pueschel, J. A. Reagan, T. E. DeFoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98, 22969–22985 (1993).
[CrossRef]

C. R. Trepte, R. E. Veiga, M. P. McCormick, “The poleward dispersal of Mount Pinatubo volcanic aerosol,” J. Geophys. Res. 98, 18563–18573 (1993).
[CrossRef]

R. F. Pueschel, P. B. Russell, D. A. Allen, G. V. Ferry, K. G. Snetsinger, J. M. Livingston, S. Verma, “Physical and optical properties of the Pinatubo volcanic aerosol: aircraft observations with impactors and a sun-tracking photometer,” J. Geophys. Res. 99, 12915–12922 (1994).
[CrossRef]

E. G. Dutton, P. Reddy, S. Ryan, J. J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994).
[CrossRef]

J. Zhao, R. P. Turco, O. B. Toon, “A model simulation of Pinatubo volcanic aerosols in the stratosphere,” J. Geophys. Res. 100, 7315–7328 (1995).
[CrossRef]

J. M. Rosen, N. T. Kjome, R. L. McKenzie, J. B. Liley, “Decay of Mount Pinatubo aerosol at midlatitudes in the northern and southern hemispheres,” J. Geophys. Res. 99, 25733–25739 (1994).
[CrossRef]

D. J. Hofmann, T. Deshler, “Stratospheric cloud observations during formation of the antarctic ozone hole in 1989,” J. Geophys. Res. 96, 2897–2912 (1991).
[CrossRef]

D. E. Kinnison, K. E. Grant, P. S. Connell, D. A. Rotman, D. J. Wuebbles, “The chemical and radiative effects of the Mount Pinatubo eruption,” J. Geophys. Res. 99, 25705–25731 (1994).
[CrossRef]

J. Meteorol. Soc. Jpn. (1)

S. Asano, A. Uchiyama, M. Shiobara, “Spectral optical thickness and size distribution of the Pinatubo volcanic aerosols as estimated by ground-based sunphotometry,” J. Meteorol. Soc. Jpn. 71, 165–173 (1993).

Nature (3)

S. Solomon, “Progress towards a quantitative understanding of Antarctic ozone depletion,” Nature 347, 347–354 (1990).
[CrossRef]

K. Arnold, T. Bürke, S. Qui, “Evidence for stratospheric ozone-depleting heterogeneous chemistry on volcanic aerosols from El Chichón,” Nature 348, 49–50 (1990).
[CrossRef]

M. P. McCormick, L. W. Thomason, C. R. Trepte, “Atmospheric effects of the Mt. Pinatubo eruption,” Nature 373, 399–404 (1995).
[CrossRef]

Opt. Eng. (1)

C. J. Grund, E. W. Eloranta, “University of Wisconsin High Spectral Resolution Lidar,” Opt. Eng. 30, 6–12 (1991).
[CrossRef]

Rev. Laser Eng. (2)

I. S. McDermid, “NDSC and the JPL stratospheric lidars,” Rev. Laser Eng. 23, 97–103 (1995).
[CrossRef]

A. Ansmann, H. Jäger, “Retrieval of the Pinatubo-aerosol optical depth and microphysical parameters from lidar measurements,” Rev. Laser Eng. 23, 154–160 (1995).
[CrossRef]

Science (3)

K. Sassen, “Evidence for liquid-phase cirrus cloud formation from volcanic aerosols: climatic implications,” Science 257, 516–519 (1992).
[CrossRef] [PubMed]

P. Minnis, E. F. Harrison, L. L. Stowe, G. G. Gibson, F. M. Denn, D. R. Doelling, W. L. Smith, “Radiative climate forcing by the Mount Pinatubo eruption,” Science 259, 1411–1415 (1993).
[CrossRef] [PubMed]

G. Brasseur, C. Granier, “Mount Pinatubo aerosols, chlorofluorocarbons, and ozone depletion,” Science 257, 1239–1242 (1992).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Effective extinction efficiency Q ˜ α , effective backscatter efficiency Q ˜ β , and lidar ratio S versus effective radius r ˜ for a wavelength of 355 nm. The circles indicate the values for mono-modal (○) and bimodal (●) stratospheric size distributions with H2SO4 weight contents of 70–80% measured with balloonborne optical particle counters at Laramie, Wyoming, at heights between 15 and 25 km. The solid curves are the curves fitted to these data points. Calculations for monomodal size distributions with distribution widths of σ = 1.4 (dashed curves), 1.9 (dotted curves), 2.5 (dashed–dotted curves) are shown for comparison.

Fig. 2
Fig. 2

Effective extinction efficiency Q ˜ α , effective backscatter efficiency Q ˜ β and lidar ratio S versus effective radius r ˜ for a wavelength of 355 nm and for H2SO4 weight contents of 40–80%. The curves are fitted to data points of the stratospheric size distributions measured at Laramie, Wyoming. The fit parameters are listed in Table 1.

Fig. 3
Fig. 3

Factors C α A , C β A and C α V , C β V for the conversion of α to surface-area concentration, of β to surface-area concentration, of α to volume concentration, and of β to volume concentration and conversion of lidar ratio S to effective radius r ˜ for a wavelength of 355 nm and for H2SO4 weight contents of 40–80%. The curves are fitted to data points of stratospheric size distributions measured at Laramie. The fit parameters are listed in Table 3.

Fig. 4
Fig. 4

Stratospheric-aerosol parameters measured on 18 January 1993. Signal-smoothing lengths are 600 and 900 m for the backscatter coefficient and 1500 and 3000 m for the other curves below and above 18 km, respectively. The calculation step width is 60 m. Mass and surface-area concentrations are calculated from the extinction coefficient (solid curves) and from the backscatter coefficient (dotted curves). Effective radii are determined from the lidar ratio with a third-order polynomial fit (solid curve) and a linear fit (dotted curve). The error bars indicate the standard deviation due to signal noise and systematic errors in the case of the optical parameters and to signal noise, systematic errors, and uncertainties introduced by the applied conversion procedure in the case of the derived microphysical parameters. The solid horizontal lines show the tropopause as given by the radiosonde temperature profile. Corresponding to the smoothing lengths, values between the dashed horizontal lines are calculated from signals measured within the volcanic aerosol layer between 9.1 km (tropopause) and 22 km (volcanic-layer top).

Fig. 5
Fig. 5

Monthly mean profiles of backscatter and extinction coefficients and mass and surface-area concentrations measured in January 1992. Six individual profiles are averaged. The error bars indicate the standard deviation. The gliding average window lengths are 600 m for the backscatter coefficient and 2500 m for the other parameters. Mass and surface-area concentrations are calculated from the backscatter-coefficient profiles. The symbols show values determined with balloonborne particle counters at Laramie on 30 December 1991 (○), on 27 January 1992 (●), and on 13 February 1992 (×). The dotted and dashed profiles of surface-area concentrations represent latitude-mean values derived from SAGE II at 53.5° N in the periods 16 October to 23 November 1991 and 18 February to 29 March 1992, respectively.

Fig. 6
Fig. 6

Monthly mean profiles of backscatter coefficient, extinction coefficient, and lidar ratio obtained in January 1992 (thick solid curves, average of six measurements), in January 1993 (dotted curves, average of six measurements), and in June 1994 (thin solid curves, average of two measurements). The error bars indicate the standard deviation. The gliding average window lengths are 600 m for the backscatter coefficient and 2500 m for the other parameters.

Fig. 7
Fig. 7

Monthly mean profiles of mass and surface-area concentrations obtained in January 1992 (thick solid curves, average of six measurements), in January 1993 (dotted curves, average of six measurements), and in June 1994 (thin solid curves, average of two measurements). Error bars indicate the standard deviation. The signal-smoothing length is 2500 m. Mass and surface-area concentrations are calculated from the backscatter-coefficient profiles.

Fig. 8
Fig. 8

Effective extinction efficiency Q ˜ α , effective backscatter efficiency Q ˜ β , and lidar ratio S versus effective radius r ˜ for a wavelength of 532 nm. The dots indicate the values for stratospheric size distributions measured at Laramie (70–80% H2SO4 content; see Section 2). The curves are fitted to data points calculated for the same size distributions, but for H2SO4 contents of 40–80%. The fit parameters are listed in Table 6.

Tables (6)

Tables Icon

Table 1 Coefficients of the Fitting Curves Q ˜ α ( r ˜ ) , Q ˜ β ( r ˜ ) , and S r ˜ for a Wavelength of 355 nma

Tables Icon

Table 2 Coefficients of the Fitting Curves as in Table 1, but for 308 nm

Tables Icon

Table 3 Coefficients of the Conversion-Factor Fitting Curves for a Wavelength of 355 nma

Tables Icon

Table 4 Coefficients of the Conversion-Factor Fitting Curves as in Table 3, but for 308 nm

Tables Icon

Table 5 Relative Systematic Errors Δβ/β, Δα/α, and ΔS/S (in Percent) as a Result of Uncertainties in Temperature (ΔT), Ozone Concentration (ΔO3, for 308 nm only), Reference Values [Δβ(z 0)], and Mean Relative Systematic Errors (MRSE) for Measurement Wavelengths of 308 and 355 nma

Tables Icon

Table 6 Coefficients of the Fitting Curves as in Table 1, but for 532 nm

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

α = Q α ( r , m ) n ( r ) π r 2 d r ,
β = Q β ( r , m ) n ( r ) π r 2 d r .
A = 4 π n ( r ) r 2 d r ,
V = 4 π 3 n ( r ) r 3 d r .
r ˜ = n ( r ) r 3 d r n ( r ) r 2 d r = 3 V A ,
Q ˜ α , β = Q α , β ( r , m ) n ( r ) r 2 d r n ( r ) r 2 d r
A = 4 Q ˜ α α = 4 Q ˜ β β ,
V = 4 r ˜ 3 Q ˜ α α = 4 r ˜ 3 Q ˜ β β .
S = α β = Q ˜ α Q ˜ β .
n ( r ) = i N i r 2 π ln σ i exp ( - ln 2 r / r i 2 ln 2 σ i )

Metrics