Abstract

We present a new method for displaying light in flight. Fresnel holograms are recorded directly on a CCD sensor, electronically stored, and numerically reconstructed. Experimental results are shown. From different parts of a single holographic recording, different views of a wave front can be reconstructed. This means that the temporal evolution of a wave front can be observed by numerical methods.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Abramson, “Light-in-flight recording by holography,” Opt. Lett. 3, 121–123 (1978).
    [CrossRef] [PubMed]
  2. N. Abramson, “Light-in-flight recording: high-speed holographic motion pictures of ultrafast phenomena,” Appl. Opt. 22, 215–232 (1983).
    [CrossRef] [PubMed]
  3. H. Rabal, J. Pomarico, R. Arizaga, “Light-in-flight digital holography display,” Appl. Opt. 33, 4358–4360 (1994).
    [CrossRef] [PubMed]
  4. R. Jones, C. Wykes, Holographic and Speckle Interferometry2nd ed. (Cambridge U. Press, New York, 1989).
    [CrossRef]
  5. R. S. Sirohi, ed., Speckle Metrology (Dekker, New York, 1993).
  6. U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am.A 11, 2011–2015 (1994).
    [CrossRef]
  7. U. Schnars, W. Jüptner, “Digital recording and reconstruction of holograms in hologram interferometry and shearography,” Appl. Opt. 33, 4373–4377 (1994).
    [CrossRef] [PubMed]
  8. S.-G. Pettersson, H. Bergstrom, N. Abramson, “Light-inflight recording. 6: Experiment with view-time expansion using a skew reference wave,” Appl. Opt. 28, 766–770 (1989).
    [CrossRef] [PubMed]
  9. N. H. Abramson, K. G. Spears, “Single pulse light-in-flight recording by holography,” Appl. Opt. 28, 1834–1841 (1989).
    [CrossRef] [PubMed]

1994 (3)

H. Rabal, J. Pomarico, R. Arizaga, “Light-in-flight digital holography display,” Appl. Opt. 33, 4358–4360 (1994).
[CrossRef] [PubMed]

U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am.A 11, 2011–2015 (1994).
[CrossRef]

U. Schnars, W. Jüptner, “Digital recording and reconstruction of holograms in hologram interferometry and shearography,” Appl. Opt. 33, 4373–4377 (1994).
[CrossRef] [PubMed]

1989 (2)

S.-G. Pettersson, H. Bergstrom, N. Abramson, “Light-inflight recording. 6: Experiment with view-time expansion using a skew reference wave,” Appl. Opt. 28, 766–770 (1989).
[CrossRef] [PubMed]

N. H. Abramson, K. G. Spears, “Single pulse light-in-flight recording by holography,” Appl. Opt. 28, 1834–1841 (1989).
[CrossRef] [PubMed]

1983 (1)

N. Abramson, “Light-in-flight recording: high-speed holographic motion pictures of ultrafast phenomena,” Appl. Opt. 22, 215–232 (1983).
[CrossRef] [PubMed]

1978 (1)

Abramson, N.

S.-G. Pettersson, H. Bergstrom, N. Abramson, “Light-inflight recording. 6: Experiment with view-time expansion using a skew reference wave,” Appl. Opt. 28, 766–770 (1989).
[CrossRef] [PubMed]

N. Abramson, “Light-in-flight recording: high-speed holographic motion pictures of ultrafast phenomena,” Appl. Opt. 22, 215–232 (1983).
[CrossRef] [PubMed]

N. Abramson, “Light-in-flight recording by holography,” Opt. Lett. 3, 121–123 (1978).
[CrossRef] [PubMed]

Abramson, N. H.

Arizaga, R.

Bergstrom, H.

S.-G. Pettersson, H. Bergstrom, N. Abramson, “Light-inflight recording. 6: Experiment with view-time expansion using a skew reference wave,” Appl. Opt. 28, 766–770 (1989).
[CrossRef] [PubMed]

Jones, R.

R. Jones, C. Wykes, Holographic and Speckle Interferometry2nd ed. (Cambridge U. Press, New York, 1989).
[CrossRef]

Jüptner, W.

U. Schnars, W. Jüptner, “Digital recording and reconstruction of holograms in hologram interferometry and shearography,” Appl. Opt. 33, 4373–4377 (1994).
[CrossRef] [PubMed]

Pettersson, S.-G.

S.-G. Pettersson, H. Bergstrom, N. Abramson, “Light-inflight recording. 6: Experiment with view-time expansion using a skew reference wave,” Appl. Opt. 28, 766–770 (1989).
[CrossRef] [PubMed]

Pomarico, J.

Rabal, H.

Schnars, U.

U. Schnars, W. Jüptner, “Digital recording and reconstruction of holograms in hologram interferometry and shearography,” Appl. Opt. 33, 4373–4377 (1994).
[CrossRef] [PubMed]

U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am.A 11, 2011–2015 (1994).
[CrossRef]

Spears, K. G.

Wykes, C.

R. Jones, C. Wykes, Holographic and Speckle Interferometry2nd ed. (Cambridge U. Press, New York, 1989).
[CrossRef]

Appl. Opt. (3)

U. Schnars, W. Jüptner, “Digital recording and reconstruction of holograms in hologram interferometry and shearography,” Appl. Opt. 33, 4373–4377 (1994).
[CrossRef] [PubMed]

S.-G. Pettersson, H. Bergstrom, N. Abramson, “Light-inflight recording. 6: Experiment with view-time expansion using a skew reference wave,” Appl. Opt. 28, 766–770 (1989).
[CrossRef] [PubMed]

N. Abramson, “Light-in-flight recording: high-speed holographic motion pictures of ultrafast phenomena,” Appl. Opt. 22, 215–232 (1983).
[CrossRef] [PubMed]

Appl. Opt. (2)

J. Opt. Soc. Am.A (1)

U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am.A 11, 2011–2015 (1994).
[CrossRef]

Opt. Lett. (1)

Other (2)

R. Jones, C. Wykes, Holographic and Speckle Interferometry2nd ed. (Cambridge U. Press, New York, 1989).
[CrossRef]

R. S. Sirohi, ed., Speckle Metrology (Dekker, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

General holographic setup for digital recording of holograms: M's, mirrors; BS, beam splitter; L's, lenses.

Fig. 2
Fig. 2

Numerically reconstructed wave front.

Fig. 3
Fig. 3

Geometrical considerations for calculating the coherence length of the laser.

Fig. 4
Fig. 4

Normalized autocorrelation of a low-pass filtered intensity profile. Its width at 1/e of the maximum value corresponds to 45 pixels.

Fig. 5
Fig. 5

Holographic setup used for observing the temporal evolution of a wave front (top view).

Fig. 6
Fig. 6

Object used for displaying the temporal evolution of a wave front as seen from the CCD sensor.

Fig. 7
Fig. 7

Wavefront at three different times, reconstructed from a single holographic recording: (a) no delay, the wave front just reaches the mirror; (b) 10-ps delay, the mirror reflects one part of the wave front; (c) 30-ps delay with respect to the left recording; one part is reflected in the opposite direction, the other part is traveling in the original direction.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Γ ( ξ , η ) = ia λ d exp [ i π λ d ( ξ 2 + η 2 ) ] × t ( x , y ) exp [ i π λ d ( x 2 + y 2 ) ] × exp [ i 2 π λ d ( x ξ + y η ) ] d x d y ,
Γ ( m , n ) = exp [ i π λ d ( m 2 Δ ξ 2 + n 2 Δ η 2 ) ] × k = 0 N 1 l = 0 N 1 t ( k , l ) exp [ i π λ d ( k 2 Δ x 2 + l 2 Δ y 2 ) ] × exp [ i 2 π ( km N + ln N ) ] , m = 0 , 1 , , N 1 , n = 0 , 1 , , N 1
Δ ξ = λ d N Δ x , Δ η = λ d N Δ y .
I ( m , n ) = | Γ ( m , n ) | 2 .
f = 2 λ sin θ 2 .
w = ct sin α = K sin α .
K = Δ ξ × 45 × sin 80 ° = 2.3 mm .
Δ t = ( n 1 ) p c ,

Metrics