## Abstract

This paper describes a convenient technique for measuring the loss of optical devices that have connectors at both ends. The technique can provide both bidirectional internal and values temporal connector loss by the mathematical solution of four normalized power measurements. Accuracy of the internal loss measurement is limited by the need to use four variables that may fluctuate due to unsuitable fiber manipulations or leaky modes.

© 1995 Optical Society of America

Full Article |

PDF Article
### Equations (10)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${\mathrm{\alpha}}_{1}+{\mathrm{\alpha}}_{0}={P}_{0}-{P}_{1},$$
(2)
$${\mathrm{\alpha}}_{1}+{\mathrm{\alpha}}_{0}+{\mathrm{\alpha}}_{2}={P}_{0}-{P}_{2},$$
(3)
$${\mathrm{\alpha}}_{1}+{{\mathrm{\alpha}}_{0}}^{\prime}+{\mathrm{\alpha}}_{2}={{P}_{0}}^{\prime}-{{P}_{2}}^{\prime},$$
(4)
$${{\mathrm{\alpha}}_{0}}^{\prime}+{\mathrm{\alpha}}_{2}={{P}_{0}}^{\prime}-{{P}_{1}}^{\prime}.$$
(5)
$${\mathrm{\alpha}}_{0}=({P}_{0}-{P}_{1})-({{P}_{1}}^{\prime}-{{P}_{2}}^{\prime}),$$
(6)
$${{\mathrm{\alpha}}_{0}}^{\prime}=({{P}_{0}}^{\prime}-{{P}_{1}}^{\prime})-({P}_{1}-{P}_{2}),$$
(7)
$${\mathrm{\alpha}}_{1}={{P}_{1}}^{\prime}-{{P}_{2}}^{\prime},$$
(8)
$${\mathrm{\alpha}}_{2}={P}_{1}-{P}_{2}.$$
(9)
$${\mathrm{\alpha}}_{\text{ins}}={\mathrm{\alpha}}_{0}+{\mathrm{\alpha}}_{1}+{\mathrm{\alpha}}_{2}={P}_{0}-{P}_{2},$$
(10)
$${{\mathrm{\alpha}}_{\text{ins}}}^{\prime}={{\mathrm{\alpha}}_{0}}^{\prime}+{\mathrm{\alpha}}_{1}+{\mathrm{\alpha}}_{2}={{P}_{0}}^{\prime}-{{P}_{2}}^{\prime}.$$