Abstract

A solid plastic phantom has been developed with optical properties that closely match those of human breast tissue at near-IR wavelengths. The phantom is a 54-mm-thick slab containing four small cylinders of contrasting scatter and absorption. A detailed description of the phantom is followed by an account of an attempt to image the phantom by a time-resolved imaging technique. Images generated with transmitted light with the shortest flight times revealed the embedded cylinders with greater visibility than images obtained with continuous light transillumination. However, images corresponding to flight times of less than ~700 ps were severely degraded from a lack of detected photons. An attempt was made to overcome this degradation by extrapolating the measured temporal distributions with an analytic model of photon transport. Results suggest that subcentimeter resolution imaging of low-contrast tumors in the breast is scientifically possible. Our phantom is available to any other research groups wishing to evaluate their systems.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chance, R. R. Alfano, eds., Photon Migration and Imaging in Random Media and Tissues, Proc. Soc. Photo-Opt. Instrum. Eng. 1888 (1993).
  2. B. Chance, R. R. Alfano, eds., Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media, Proc. Soc. Photo-Opt. Instrum. Eng. 2389 (1995).
  3. P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis,” Rad. Med. 8, 1–5 (1990).
  4. B. Monsees, J. M. Destouet, D. Gersell, “Light scan evaluation of nonpalpable breast lesions,” Radiology 163, 467–470 (1987).
    [PubMed]
  5. E. Leith, C. Chen, H. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992).
    [CrossRef]
  6. K. Yoo, Q. Xing, R. R. Alfano, “Imaging objects hidden in highly scattering media using femtosecond second-harmonic-generation cross-correlation time gating,” Opt. Lett. 16, 1019–1021 (1991).
    [CrossRef] [PubMed]
  7. L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
    [CrossRef] [PubMed]
  8. M. D. Duncan, R. Mahon, L. L. Tankersley, J. Reintjes, “Time-gated imaging through scattering media using stimulated Raman amplification,” Opt. Lett. 16, 1868–1870 (1991).
    [CrossRef] [PubMed]
  9. S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
    [CrossRef] [PubMed]
  10. D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
    [CrossRef] [PubMed]
  11. J. C. Hebden, “Time-resolved imaging of opaque and transparent spheres embedded in a highly scattering medium,” Appl. Opt. 32, 3837–3841 (1993).
    [PubMed]
  12. J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
    [CrossRef] [PubMed]
  13. J. C. Hebden, D. J. Hall, D. T. Delpy, “Spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–209 (1995).
    [CrossRef] [PubMed]
  14. Y. Chen, “Characterization of the image resolution for the first-arriving-light method,” Appl. Opt. 33, 2544–2552 (1994).
    [CrossRef] [PubMed]
  15. K. J. Carson, Y. A. B. D. Wickramasinghe, P. Rolfe, “Experimental study of spatial resolution for time resolved near infrared imaging,” in Quantification and Localization Using Diffuse Photons in a Highly Scattering Medium, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2082, 10–19 (1993).
  16. A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
    [CrossRef] [PubMed]
  17. J. A. Moon, J. Reintjes, “Image resolution by use of multiply scattered light,” Opt. Lett. 19, 521–523 (1994).
    [CrossRef] [PubMed]
  18. J. A. Moon, R. Mahon, M. D. Duncan, J. Reintjes, “Resolution limits for imaging through turbid media with diffuse light,” Opt. Lett. 18, 1591–1593 (1993).
    [CrossRef] [PubMed]
  19. G. Zaccanti, P. Donelli, “Attenuation of energy in time-gated transillumination imaging: numerical results,” Appl. Opt. 33, 7023–7030 (1994).
    [CrossRef] [PubMed]
  20. J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction on the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990).
    [CrossRef] [PubMed]
  21. S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1767, 372–383 (1992).
  22. M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
    [CrossRef]
  23. H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near-infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Ref. 2, pp. 372–386.
  24. J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994).
    [CrossRef] [PubMed]
  25. M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
    [CrossRef]
  26. M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
    [CrossRef] [PubMed]
  27. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
    [CrossRef] [PubMed]
  28. H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
    [CrossRef] [PubMed]
  29. G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissue-like phantoms,” Appl. Opt. 33, 6699–6710 (1994).
    [CrossRef] [PubMed]
  30. K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy,” Invest. Radiol. 29, 410–414 (1994).
    [CrossRef] [PubMed]
  31. M. Cope, D. T. Delpy, S. Wray, J. S. Wyatt, E. O. R. Reynolds, “A CCD spectrophotometer to quantitate the concentration of chromophores in living tissue utilizing the absorption peak of water at 975 nm,” Adv. Exp. Med. Biol. 247, 33–40 (1989).
    [CrossRef]
  32. S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
    [CrossRef] [PubMed]
  33. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  34. A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon pathlength distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).
    [CrossRef]
  35. J. M. Kaltenbach, M. Kaschke, “Frequency and time-domain modelling of light transport in random media,” In Institutes for Advanced Optical Technologies in Medical Optical Technology: Functional Imaging and Monitoring, G. J. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute for Advanced Optical Technologies (SPIE, Bellingham, Wash., 1993), pp. 65–86.
  36. S. R. Arridge, “Photon-measurement density functions. Part 1: analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
    [CrossRef] [PubMed]
  37. A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast detected in transillumination imaging of abnormalities embedded in tissue,” to be published in Appl. Opt.
  38. J. C. Hebden, A. H. Gandjbakhche, “Experimental validation of an elementary formula for estimating spatial resolution for optical transillumination imaging,” Med. Phys. 22, 1271–1272 (1995).
    [CrossRef] [PubMed]
  39. Y. Hoshi, M. Tamura, “Dynamic multichannel near-infrared optical imaging of human brain activity,” J. Appl. Physiol. 75, 1842–1846 (1993).
    [PubMed]

1995

J. C. Hebden, D. J. Hall, D. T. Delpy, “Spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–209 (1995).
[CrossRef] [PubMed]

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

S. R. Arridge, “Photon-measurement density functions. Part 1: analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
[CrossRef] [PubMed]

J. C. Hebden, A. H. Gandjbakhche, “Experimental validation of an elementary formula for estimating spatial resolution for optical transillumination imaging,” Med. Phys. 22, 1271–1272 (1995).
[CrossRef] [PubMed]

1994

1993

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

J. A. Moon, R. Mahon, M. D. Duncan, J. Reintjes, “Resolution limits for imaging through turbid media with diffuse light,” Opt. Lett. 18, 1591–1593 (1993).
[CrossRef] [PubMed]

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

J. C. Hebden, “Time-resolved imaging of opaque and transparent spheres embedded in a highly scattering medium,” Appl. Opt. 32, 3837–3841 (1993).
[PubMed]

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
[CrossRef]

Y. Hoshi, M. Tamura, “Dynamic multichannel near-infrared optical imaging of human brain activity,” J. Appl. Physiol. 75, 1842–1846 (1993).
[PubMed]

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon pathlength distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).
[CrossRef]

1992

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
[CrossRef] [PubMed]

E. Leith, C. Chen, H. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992).
[CrossRef]

1991

K. Yoo, Q. Xing, R. R. Alfano, “Imaging objects hidden in highly scattering media using femtosecond second-harmonic-generation cross-correlation time gating,” Opt. Lett. 16, 1019–1021 (1991).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

M. D. Duncan, R. Mahon, L. L. Tankersley, J. Reintjes, “Time-gated imaging through scattering media using stimulated Raman amplification,” Opt. Lett. 16, 1868–1870 (1991).
[CrossRef] [PubMed]

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

1990

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
[CrossRef] [PubMed]

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis,” Rad. Med. 8, 1–5 (1990).

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction on the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990).
[CrossRef] [PubMed]

1989

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

M. Cope, D. T. Delpy, S. Wray, J. S. Wyatt, E. O. R. Reynolds, “A CCD spectrophotometer to quantitate the concentration of chromophores in living tissue utilizing the absorption peak of water at 975 nm,” Adv. Exp. Med. Biol. 247, 33–40 (1989).
[CrossRef]

1987

B. Monsees, J. M. Destouet, D. Gersell, “Light scan evaluation of nonpalpable breast lesions,” Radiology 163, 467–470 (1987).
[PubMed]

Alfano, R. R.

K. Yoo, Q. Xing, R. R. Alfano, “Imaging objects hidden in highly scattering media using femtosecond second-harmonic-generation cross-correlation time gating,” Opt. Lett. 16, 1019–1021 (1991).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Andersson-Engels, S.

Aronson, R.

H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near-infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Ref. 2, pp. 372–386.

Arridge, S. R.

S. R. Arridge, “Photon-measurement density functions. Part 1: analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
[CrossRef]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1767, 372–383 (1992).

Baba, K.

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis,” Rad. Med. 8, 1–5 (1990).

Barbour, R. L.

H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near-infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Ref. 2, pp. 372–386.

Benaron, D. A.

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

Berg, R.

Bonner, R. F.

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon pathlength distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).
[CrossRef]

A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast detected in transillumination imaging of abnormalities embedded in tissue,” to be published in Appl. Opt.

Carson, K. J.

K. J. Carson, Y. A. B. D. Wickramasinghe, P. Rolfe, “Experimental study of spatial resolution for time resolved near infrared imaging,” in Quantification and Localization Using Diffuse Photons in a Highly Scattering Medium, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2082, 10–19 (1993).

Chance, B.

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Chang, J.

H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near-infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Ref. 2, pp. 372–386.

Chen, C.

Chen, H.

Chen, Y.

Cope, M.

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

M. Cope, D. T. Delpy, S. Wray, J. S. Wyatt, E. O. R. Reynolds, “A CCD spectrophotometer to quantitate the concentration of chromophores in living tissue utilizing the absorption peak of water at 975 nm,” Adv. Exp. Med. Biol. 247, 33–40 (1989).
[CrossRef]

Davies, E. R.

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

Delpy, D. T.

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, D. T. Delpy, “Spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–209 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
[CrossRef]

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

M. Cope, D. T. Delpy, S. Wray, J. S. Wyatt, E. O. R. Reynolds, “A CCD spectrophotometer to quantitate the concentration of chromophores in living tissue utilizing the absorption peak of water at 975 nm,” Adv. Exp. Med. Biol. 247, 33–40 (1989).
[CrossRef]

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1767, 372–383 (1992).

Destouet, J. M.

B. Monsees, J. M. Destouet, D. Gersell, “Light scan evaluation of nonpalpable breast lesions,” Radiology 163, 467–470 (1987).
[PubMed]

Dilworth, D.

Donelli, P.

Duncan, M. D.

Firbank, M.

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

Frank, G. L.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Gandjbakhche, A. H.

J. C. Hebden, A. H. Gandjbakhche, “Experimental validation of an elementary formula for estimating spatial resolution for optical transillumination imaging,” Med. Phys. 22, 1271–1272 (1995).
[CrossRef] [PubMed]

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon pathlength distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).
[CrossRef]

A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast detected in transillumination imaging of abnormalities embedded in tissue,” to be published in Appl. Opt.

Gersell, D.

B. Monsees, J. M. Destouet, D. Gersell, “Light scan evaluation of nonpalpable breast lesions,” Radiology 163, 467–470 (1987).
[PubMed]

Graber, H. L.

H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near-infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Ref. 2, pp. 372–386.

Grünbaum, F. A.

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction on the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990).
[CrossRef] [PubMed]

Hall, D. J.

J. C. Hebden, D. J. Hall, D. T. Delpy, “Spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–209 (1995).
[CrossRef] [PubMed]

He, P.

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis,” Rad. Med. 8, 1–5 (1990).

Hebden, J. C.

J. C. Hebden, D. J. Hall, D. T. Delpy, “Spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–209 (1995).
[CrossRef] [PubMed]

J. C. Hebden, A. H. Gandjbakhche, “Experimental validation of an elementary formula for estimating spatial resolution for optical transillumination imaging,” Med. Phys. 22, 1271–1272 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994).
[CrossRef] [PubMed]

J. C. Hebden, “Time-resolved imaging of opaque and transparent spheres embedded in a highly scattering medium,” Appl. Opt. 32, 3837–3841 (1993).
[PubMed]

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
[CrossRef] [PubMed]

Ho, P. P.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Hoshi, Y.

Y. Hoshi, M. Tamura, “Dynamic multichannel near-infrared optical imaging of human brain activity,” J. Appl. Physiol. 75, 1842–1846 (1993).
[PubMed]

Jackson, P. C.

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

Jarlman, O.

Kaltenbach, J. M.

J. M. Kaltenbach, M. Kaschke, “Frequency and time-domain modelling of light transport in random media,” In Institutes for Advanced Optical Technologies in Medical Optical Technology: Functional Imaging and Monitoring, G. J. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute for Advanced Optical Technologies (SPIE, Bellingham, Wash., 1993), pp. 65–86.

Kaneko, M.

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis,” Rad. Med. 8, 1–5 (1990).

Kaschke, M.

J. M. Kaltenbach, M. Kaschke, “Frequency and time-domain modelling of light transport in random media,” In Institutes for Advanced Optical Technologies in Medical Optical Technology: Functional Imaging and Monitoring, G. J. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute for Advanced Optical Technologies (SPIE, Bellingham, Wash., 1993), pp. 65–86.

Key, H.

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

Kohn, P.

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction on the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990).
[CrossRef] [PubMed]

Kölzer, J.

Leith, E.

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Lopez, J.

Lubowsky, J.

H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near-infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Ref. 2, pp. 372–386.

Mahon, R.

Mitic, G.

Monsees, B.

B. Monsees, J. M. Destouet, D. Gersell, “Light scan evaluation of nonpalpable breast lesions,” Radiology 163, 467–470 (1987).
[PubMed]

Moon, J. A.

Nossal, R.

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon pathlength distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).
[CrossRef]

A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast detected in transillumination imaging of abnormalities embedded in tissue,” to be published in Appl. Opt.

Oda, M.

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

Ohta, K.

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis,” Rad. Med. 8, 1–5 (1990).

Otto, J.

Patterson, M. S.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Peters, V. G.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Plies, E.

Reintjes, J.

Reynolds, E. O. R.

M. Cope, D. T. Delpy, S. Wray, J. S. Wyatt, E. O. R. Reynolds, “A CCD spectrophotometer to quantitate the concentration of chromophores in living tissue utilizing the absorption peak of water at 975 nm,” Adv. Exp. Med. Biol. 247, 33–40 (1989).
[CrossRef]

Rolfe, P.

K. J. Carson, Y. A. B. D. Wickramasinghe, P. Rolfe, “Experimental study of spatial resolution for time resolved near infrared imaging,” in Quantification and Localization Using Diffuse Photons in a Highly Scattering Medium, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2082, 10–19 (1993).

Rudd, J.

Schweiger, M.

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
[CrossRef]

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1767, 372–383 (1992).

Singer, J. R.

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction on the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990).
[CrossRef] [PubMed]

Sölkner, G.

Stevenson, D. K.

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

Sun, P.-C.

Suzuki, K.

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

Svanberg, S.

Takai, M.

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis,” Rad. Med. 8, 1–5 (1990).

Tamura, M.

Y. Hoshi, M. Tamura, “Dynamic multichannel near-infrared optical imaging of human brain activity,” J. Appl. Physiol. 75, 1842–1846 (1993).
[PubMed]

Tankersley, L. L.

Valdmanis, J.

Vossler, G.

Wang, L.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Weiss, G. H.

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon pathlength distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).
[CrossRef]

A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast detected in transillumination imaging of abnormalities embedded in tissue,” to be published in Appl. Opt.

Wells, P. N. T.

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

Wickramasinghe, Y. A. B. D.

K. J. Carson, Y. A. B. D. Wickramasinghe, P. Rolfe, “Experimental study of spatial resolution for time resolved near infrared imaging,” in Quantification and Localization Using Diffuse Photons in a Highly Scattering Medium, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2082, 10–19 (1993).

Wilson, B. C.

Wray, S.

M. Cope, D. T. Delpy, S. Wray, J. S. Wyatt, E. O. R. Reynolds, “A CCD spectrophotometer to quantitate the concentration of chromophores in living tissue utilizing the absorption peak of water at 975 nm,” Adv. Exp. Med. Biol. 247, 33–40 (1989).
[CrossRef]

Wyatt, J. S.

M. Cope, D. T. Delpy, S. Wray, J. S. Wyatt, E. O. R. Reynolds, “A CCD spectrophotometer to quantitate the concentration of chromophores in living tissue utilizing the absorption peak of water at 975 nm,” Adv. Exp. Med. Biol. 247, 33–40 (1989).
[CrossRef]

Wyman, D. R.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Xing, Q.

Yamashita, Y.

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis,” Rad. Med. 8, 1–5 (1990).

Yoo, K.

Zaccanti, G.

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Zinth, W.

Zubelli, J. P.

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction on the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol.

M. Cope, D. T. Delpy, S. Wray, J. S. Wyatt, E. O. R. Reynolds, “A CCD spectrophotometer to quantitate the concentration of chromophores in living tissue utilizing the absorption peak of water at 975 nm,” Adv. Exp. Med. Biol. 247, 33–40 (1989).
[CrossRef]

Appl. Opt.

Invest. Radiol.

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

J. Appl. Physiol.

Y. Hoshi, M. Tamura, “Dynamic multichannel near-infrared optical imaging of human brain activity,” J. Appl. Physiol. 75, 1842–1846 (1993).
[PubMed]

J. Math. Imag. Vision

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
[CrossRef]

J. Opt. Soc. Am. A

Med. Phys.

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, D. T. Delpy, “Spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–209 (1995).
[CrossRef] [PubMed]

J. C. Hebden, A. H. Gandjbakhche, “Experimental validation of an elementary formula for estimating spatial resolution for optical transillumination imaging,” Med. Phys. 22, 1271–1272 (1995).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Phys. Rev. E

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon pathlength distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).
[CrossRef]

Rad. Med.

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis,” Rad. Med. 8, 1–5 (1990).

Radiology

B. Monsees, J. M. Destouet, D. Gersell, “Light scan evaluation of nonpalpable breast lesions,” Radiology 163, 467–470 (1987).
[PubMed]

Science

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction on the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990).
[CrossRef] [PubMed]

Other

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1767, 372–383 (1992).

K. J. Carson, Y. A. B. D. Wickramasinghe, P. Rolfe, “Experimental study of spatial resolution for time resolved near infrared imaging,” in Quantification and Localization Using Diffuse Photons in a Highly Scattering Medium, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2082, 10–19 (1993).

B. Chance, R. R. Alfano, eds., Photon Migration and Imaging in Random Media and Tissues, Proc. Soc. Photo-Opt. Instrum. Eng. 1888 (1993).

B. Chance, R. R. Alfano, eds., Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media, Proc. Soc. Photo-Opt. Instrum. Eng. 2389 (1995).

J. M. Kaltenbach, M. Kaschke, “Frequency and time-domain modelling of light transport in random media,” In Institutes for Advanced Optical Technologies in Medical Optical Technology: Functional Imaging and Monitoring, G. J. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute for Advanced Optical Technologies (SPIE, Bellingham, Wash., 1993), pp. 65–86.

A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast detected in transillumination imaging of abnormalities embedded in tissue,” to be published in Appl. Opt.

H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near-infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Ref. 2, pp. 372–386.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Transport scatter coefficient of the UCL breast phantom as a function of wavelength.

Fig. 2
Fig. 2

Absorption spectra of polyester resin, near-IR dye, and the UCL breast phantom.

Fig. 3
Fig. 3

UCL solid breast phantom.

Fig. 4
Fig. 4

Transmittance of the breast phantom as a function of wavelength.

Fig. 5
Fig. 5

Scans across the center of the phantom recorded at six wavelengths. The approximate positions of the four embedded cylinders are indicated.

Fig. 6
Fig. 6

Time-resolved image of the breast phantom corresponding to an integration time Δt = 1750 ps. White plusses indicate the approximate centers of the embedded cylinders.

Fig. 7
Fig. 7

Time-resolved images of the breast phantom generated directly from experimental data in which integration times of 800, 700, 600, and 500 ps were used. White plusses indicate the approximate centers of the embedded cylinders.

Fig. 8
Fig. 8

Log integrated intensity of a typical temporal profile (continuous curve) and a corresponding model fit (dashed curve). The lower horizontal axis indicates integration time, and the upper axis indicates the approximate spatial resolution predicted when a theoretical model was used.

Fig. 9
Fig. 9

Time-resolved images obtained from fits of the diffusion model and equivalent to integration times of 500, 400, 300, and 200 ps. White plusses indicate the approximate centers of the embedded cylinders.

Fig. 10
Fig. 10

Profiles across the images shown in Fig. 9, indicating the presence of the four embedded cylinders.

Tables (1)

Tables Icon

Table 1 Optical Properties of the Slab and Embedded Cylinders at 800 nm

Metrics