Abstract

The variation in the green intensity ratio (2H11/2 and 4S3/2 energy levels to the ground state) of Er ions in silica fibers has been studied as a function of temperature. The different processes that are used to determine the population of these levels are investigated, in particular 800-nm excited-state absorption in Er-doped fibers and 980-nm energy transfer, in Yb–Er-codoped fibers. The invariance of the intensity ratio at a fixed temperature with respect to power, wavelength, and doped fiber length has been investigated and shown to permit the realization of a high-dynamic-range (greater than 600 °C), autocalibrated fiber-optic temperature sensor.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Wickersheim, W. D. Hyatt, “Commercial applications of fiberoptic temperature measurement,” in Fiber Optic Sensors IV, R. T. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 84–96 (1990).
  2. E. Maurice, G. Monnom, A. Saïssy, D. B. Ostrowsky, G. W. Baxter, “Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers,” Opt. Lett. 19, 990–992 (1994).
    [Crossref] [PubMed]
  3. E. Maurice, G. Monnom, D. B. Ostrowsky, G. W. Baxter, “High-temperature point sensor using green fluorescence intensity ratio in Er-doped silica fibres,” in Tenth International Conference on Optical Fiber Sensors, B. Culshaw, J. D. Jones, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2360, 219–222 (1994).
  4. P. A. Krug, M. G. Sceats, G. R. Atkins, S. C. Guy, S. B. Poole, “Intermediate excited-state absorption in erbium-doped fiber strongly pumped at 980 nm,” Opt. Lett. 16, 1976–1978 (1991).
    [Crossref] [PubMed]
  5. H. Berthou, C. K. Jörgensen, “Optical-fiber temperature sensor based on upconversion-excited state fluorescence,” Opt. Lett. 15, 1100–1102 (1990).
    [Crossref] [PubMed]
  6. M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
    [Crossref]

1994 (1)

1991 (1)

1990 (1)

1983 (1)

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[Crossref]

Atkins, G. R.

Baxter, G. W.

E. Maurice, G. Monnom, A. Saïssy, D. B. Ostrowsky, G. W. Baxter, “Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers,” Opt. Lett. 19, 990–992 (1994).
[Crossref] [PubMed]

E. Maurice, G. Monnom, D. B. Ostrowsky, G. W. Baxter, “High-temperature point sensor using green fluorescence intensity ratio in Er-doped silica fibres,” in Tenth International Conference on Optical Fiber Sensors, B. Culshaw, J. D. Jones, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2360, 219–222 (1994).

Berthou, H.

Brown, R. N.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[Crossref]

Drexhage, M. G.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[Crossref]

Guy, S. C.

Hyatt, W. D.

K. A. Wickersheim, W. D. Hyatt, “Commercial applications of fiberoptic temperature measurement,” in Fiber Optic Sensors IV, R. T. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 84–96 (1990).

Jörgensen, C. K.

Krug, P. A.

Maurice, E.

E. Maurice, G. Monnom, A. Saïssy, D. B. Ostrowsky, G. W. Baxter, “Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers,” Opt. Lett. 19, 990–992 (1994).
[Crossref] [PubMed]

E. Maurice, G. Monnom, D. B. Ostrowsky, G. W. Baxter, “High-temperature point sensor using green fluorescence intensity ratio in Er-doped silica fibres,” in Tenth International Conference on Optical Fiber Sensors, B. Culshaw, J. D. Jones, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2360, 219–222 (1994).

Monnom, G.

E. Maurice, G. Monnom, A. Saïssy, D. B. Ostrowsky, G. W. Baxter, “Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers,” Opt. Lett. 19, 990–992 (1994).
[Crossref] [PubMed]

E. Maurice, G. Monnom, D. B. Ostrowsky, G. W. Baxter, “High-temperature point sensor using green fluorescence intensity ratio in Er-doped silica fibres,” in Tenth International Conference on Optical Fiber Sensors, B. Culshaw, J. D. Jones, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2360, 219–222 (1994).

Ostrowsky, D. B.

E. Maurice, G. Monnom, A. Saïssy, D. B. Ostrowsky, G. W. Baxter, “Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers,” Opt. Lett. 19, 990–992 (1994).
[Crossref] [PubMed]

E. Maurice, G. Monnom, D. B. Ostrowsky, G. W. Baxter, “High-temperature point sensor using green fluorescence intensity ratio in Er-doped silica fibres,” in Tenth International Conference on Optical Fiber Sensors, B. Culshaw, J. D. Jones, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2360, 219–222 (1994).

Poole, S. B.

Saïssy, A.

Sceats, M. G.

Shinn, M. D.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[Crossref]

Sibley, W. A.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[Crossref]

Wickersheim, K. A.

K. A. Wickersheim, W. D. Hyatt, “Commercial applications of fiberoptic temperature measurement,” in Fiber Optic Sensors IV, R. T. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 84–96 (1990).

Opt. Lett. (3)

Phys. Rev. B (1)

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[Crossref]

Other (2)

E. Maurice, G. Monnom, D. B. Ostrowsky, G. W. Baxter, “High-temperature point sensor using green fluorescence intensity ratio in Er-doped silica fibres,” in Tenth International Conference on Optical Fiber Sensors, B. Culshaw, J. D. Jones, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2360, 219–222 (1994).

K. A. Wickersheim, W. D. Hyatt, “Commercial applications of fiberoptic temperature measurement,” in Fiber Optic Sensors IV, R. T. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 84–96 (1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Self-absorption mechanism: dashed arrows, nonradiative transition; continuous arrows, radiative transition. Prad, Pnonrad, ν p , and ν e designate the radiative and nonradiative emission probabilities and the frequency of the pump and emitted photons, respectively.

Fig. 2
Fig. 2

Experimental setup used to measure the dependency of the green intensity ratio with pump-parameter variations.

Fig. 3
Fig. 3

Different schemes permitting the population of the 2H11/2 and 4S3/2 energy levels of Er3+ ions in silica fibers and the observation of the green fluorescence. Only levels of Er and Yb ions taking a part into the green emission are shown: continuous arrows, radiative transitions; dashed arrows, nonradiative transitions.

Fig. 4
Fig. 4

Green fluorescence excitation spectrum of the Yb–Er-codoped fiber.

Fig. 5
Fig. 5

Natural logarithm of the measured intensity ratio plotted against the inverse of temperature. Continuous lines are a linear fit to the data.

Fig. 6
Fig. 6

Intensity ratio as a function of launched pump power at 800 nm.

Fig. 7
Fig. 7

Intensity ratio as a function of pump wavelength for 200 mW of absorbed power.

Fig. 8
Fig. 8

Intensity ratio as a function of fiber length when the doped fiber is pumped at 800 nm by the ESA process.

Fig. 9
Fig. 9

Total green intensity as a function of fiber length when the doped fiber is pumped at 800 nm by the ESA process.

Fig. 10
Fig. 10

Schematic of the experimental sensor arrangement.

Fig. 11
Fig. 11

Behavior of (a) with temperature; (b) the natural logarithm of with the inverse of the temperature. The inset shows the difference between data and the fitted values.

Tables (1)

Tables Icon

Table 1 Optogeometrical Characteristics and Doping Levels of the Studied Fibers

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R = I H I S = c H ( ν ) c S ( ν ) p H r p S r g H g S h ν H h ν S exp ( - Δ E k T ) ,
R = a exp ( - Δ E k T )
ln ( R ) = c - b T ,
T = b c - ln ( R ) .
Δ E ( F 2 7 / 2 - F 2 5 / 2 ) = Δ E ( I 4 15 / 2 - I 4 11 / 2 ) = Δ E ( I 4 11 / 2 - F 4 7 / 2 ) .
S = 1 R d R d T = Δ E k T 2 .
Δ T = Δ R / R S .

Metrics