Abstract

An intensity-modulated fiber-optic accelerometer based on backreflection effects has been manufactured and tested. It uses a multimode fiber placed at a spherical mirror center, and the beam intensity is modulated by a micromachined silicon cantilever. This device has applications as an accelerometer and vibrometer for rotating machines. It exhibits an amplitude linearity of ±1.2% in the range of 0.1–22 m s−2, a frequency linearity of ±1% in the range of 0–100 Hz, and a temperature sensitivity of less than 0.03%/°C. The sensor is devoted to a wavelength-division multiplexing network.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Rines, “Fiber optic accelerometer with hydrophone application,” Appl. Opt. 20, 3453–3459 (1981).
    [CrossRef] [PubMed]
  2. D. R. Miers, D. Raj, J. W. Berthold, “Design and characterization of fiber optic accelerometer,” in Fiber Optic and Laser Sensors V, R. P. De Paula, E. Udd, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 838, 421–423 (1987).
  3. G. Conforti, M. Brenci, A. Mencaglia, A. G. Mignani, A. M. Scheggi, “Multimode optic vibrometer,” Proc. Phys. 44, 194–200 (1989).
  4. S. Tai, K. Kyuma, M. Nunoshita, “Fiber optic acceleration sensor based on the photoelastic effect,” Appl. Opt. 22, 1771–1774 (1983).
    [CrossRef] [PubMed]
  5. W. B. Spillman, D. H. McMahon, “Multimode fiber-optic accelerometer based on the photoelastic effect,” Appl. Opt. 21, 3511–3514 (1982).
    [CrossRef] [PubMed]
  6. W. B. Spillman, B. R. Kline, L. B. Maurice, P. L. Fhur, “Statistical-mode sensor for fiber optic vibration sensing uses,” Appl. Opt. 28, 3166–3175 (1989).
    [CrossRef] [PubMed]
  7. G. Anglaret, R. Durantis, “A spectral bridge based method for WDM networks devoted intensity modulated optical sensors,” in Proceedings of EFOC/LAN 89 (European Fiber Optic Communications, Amsterdam, The Netherlands, 1989), pp. 220–222.
  8. G. Conforti, M. Brenci, “Fiber optic vibration sensor for remote monitoring in high power electric machines,” Appl. Opt. 28, 5158–5161 (1989).
    [CrossRef] [PubMed]
  9. E. Bois, S. Huard, G. Deboisde, “Capteurs à fibres optiques à référence intrinsèque pour mesure de positionnement sans contact,” in Proceedings of OPTO 87 Septiemes Journées Professionnelles de l’OPTOelectronique(ESI Publications, Paris, 1987), pp. 91–93.
  10. K. E. Petersen, “Silicon as a mechanical material,” Proc. IEEE 70, 420–427 (1982).
    [CrossRef]
  11. G. Bruhat, Cours de Physique Générale (Masson, Paris, 1965), Chap. X, pp. 196–202.
  12. E. Peeters, S. Vergote, B. Puers, W. Sansen, “A combined silicon fusion and glass/silicon anodic bonding process for a uniaxial capacitive accelerometer,” presented at the MME’92 Third European Workshop on Micromachining, Micromechanisms and Microsystems, Leuven, Belgium, 1–2 June 1992.
  13. A. Malki, P. Lecoy, J. Marty, C. Renouf, P. Ferdinand, “Procédé dispositif pour la mesure des vibrations d’une structure en mouvement,” International patent pending (1June1994).

1989 (3)

1983 (1)

1982 (2)

1981 (1)

Anglaret, G.

G. Anglaret, R. Durantis, “A spectral bridge based method for WDM networks devoted intensity modulated optical sensors,” in Proceedings of EFOC/LAN 89 (European Fiber Optic Communications, Amsterdam, The Netherlands, 1989), pp. 220–222.

Berthold, J. W.

D. R. Miers, D. Raj, J. W. Berthold, “Design and characterization of fiber optic accelerometer,” in Fiber Optic and Laser Sensors V, R. P. De Paula, E. Udd, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 838, 421–423 (1987).

Bois, E.

E. Bois, S. Huard, G. Deboisde, “Capteurs à fibres optiques à référence intrinsèque pour mesure de positionnement sans contact,” in Proceedings of OPTO 87 Septiemes Journées Professionnelles de l’OPTOelectronique(ESI Publications, Paris, 1987), pp. 91–93.

Brenci, M.

G. Conforti, M. Brenci, A. Mencaglia, A. G. Mignani, A. M. Scheggi, “Multimode optic vibrometer,” Proc. Phys. 44, 194–200 (1989).

G. Conforti, M. Brenci, “Fiber optic vibration sensor for remote monitoring in high power electric machines,” Appl. Opt. 28, 5158–5161 (1989).
[CrossRef] [PubMed]

Bruhat, G.

G. Bruhat, Cours de Physique Générale (Masson, Paris, 1965), Chap. X, pp. 196–202.

Conforti, G.

G. Conforti, M. Brenci, A. Mencaglia, A. G. Mignani, A. M. Scheggi, “Multimode optic vibrometer,” Proc. Phys. 44, 194–200 (1989).

G. Conforti, M. Brenci, “Fiber optic vibration sensor for remote monitoring in high power electric machines,” Appl. Opt. 28, 5158–5161 (1989).
[CrossRef] [PubMed]

Deboisde, G.

E. Bois, S. Huard, G. Deboisde, “Capteurs à fibres optiques à référence intrinsèque pour mesure de positionnement sans contact,” in Proceedings of OPTO 87 Septiemes Journées Professionnelles de l’OPTOelectronique(ESI Publications, Paris, 1987), pp. 91–93.

Durantis, R.

G. Anglaret, R. Durantis, “A spectral bridge based method for WDM networks devoted intensity modulated optical sensors,” in Proceedings of EFOC/LAN 89 (European Fiber Optic Communications, Amsterdam, The Netherlands, 1989), pp. 220–222.

Ferdinand, P.

A. Malki, P. Lecoy, J. Marty, C. Renouf, P. Ferdinand, “Procédé dispositif pour la mesure des vibrations d’une structure en mouvement,” International patent pending (1June1994).

Fhur, P. L.

Huard, S.

E. Bois, S. Huard, G. Deboisde, “Capteurs à fibres optiques à référence intrinsèque pour mesure de positionnement sans contact,” in Proceedings of OPTO 87 Septiemes Journées Professionnelles de l’OPTOelectronique(ESI Publications, Paris, 1987), pp. 91–93.

Kline, B. R.

Kyuma, K.

Lecoy, P.

A. Malki, P. Lecoy, J. Marty, C. Renouf, P. Ferdinand, “Procédé dispositif pour la mesure des vibrations d’une structure en mouvement,” International patent pending (1June1994).

Malki, A.

A. Malki, P. Lecoy, J. Marty, C. Renouf, P. Ferdinand, “Procédé dispositif pour la mesure des vibrations d’une structure en mouvement,” International patent pending (1June1994).

Marty, J.

A. Malki, P. Lecoy, J. Marty, C. Renouf, P. Ferdinand, “Procédé dispositif pour la mesure des vibrations d’une structure en mouvement,” International patent pending (1June1994).

Maurice, L. B.

McMahon, D. H.

Mencaglia, A.

G. Conforti, M. Brenci, A. Mencaglia, A. G. Mignani, A. M. Scheggi, “Multimode optic vibrometer,” Proc. Phys. 44, 194–200 (1989).

Miers, D. R.

D. R. Miers, D. Raj, J. W. Berthold, “Design and characterization of fiber optic accelerometer,” in Fiber Optic and Laser Sensors V, R. P. De Paula, E. Udd, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 838, 421–423 (1987).

Mignani, A. G.

G. Conforti, M. Brenci, A. Mencaglia, A. G. Mignani, A. M. Scheggi, “Multimode optic vibrometer,” Proc. Phys. 44, 194–200 (1989).

Nunoshita, M.

Peeters, E.

E. Peeters, S. Vergote, B. Puers, W. Sansen, “A combined silicon fusion and glass/silicon anodic bonding process for a uniaxial capacitive accelerometer,” presented at the MME’92 Third European Workshop on Micromachining, Micromechanisms and Microsystems, Leuven, Belgium, 1–2 June 1992.

Petersen, K. E.

K. E. Petersen, “Silicon as a mechanical material,” Proc. IEEE 70, 420–427 (1982).
[CrossRef]

Puers, B.

E. Peeters, S. Vergote, B. Puers, W. Sansen, “A combined silicon fusion and glass/silicon anodic bonding process for a uniaxial capacitive accelerometer,” presented at the MME’92 Third European Workshop on Micromachining, Micromechanisms and Microsystems, Leuven, Belgium, 1–2 June 1992.

Raj, D.

D. R. Miers, D. Raj, J. W. Berthold, “Design and characterization of fiber optic accelerometer,” in Fiber Optic and Laser Sensors V, R. P. De Paula, E. Udd, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 838, 421–423 (1987).

Renouf, C.

A. Malki, P. Lecoy, J. Marty, C. Renouf, P. Ferdinand, “Procédé dispositif pour la mesure des vibrations d’une structure en mouvement,” International patent pending (1June1994).

Rines, G. A.

Sansen, W.

E. Peeters, S. Vergote, B. Puers, W. Sansen, “A combined silicon fusion and glass/silicon anodic bonding process for a uniaxial capacitive accelerometer,” presented at the MME’92 Third European Workshop on Micromachining, Micromechanisms and Microsystems, Leuven, Belgium, 1–2 June 1992.

Scheggi, A. M.

G. Conforti, M. Brenci, A. Mencaglia, A. G. Mignani, A. M. Scheggi, “Multimode optic vibrometer,” Proc. Phys. 44, 194–200 (1989).

Spillman, W. B.

Tai, S.

Vergote, S.

E. Peeters, S. Vergote, B. Puers, W. Sansen, “A combined silicon fusion and glass/silicon anodic bonding process for a uniaxial capacitive accelerometer,” presented at the MME’92 Third European Workshop on Micromachining, Micromechanisms and Microsystems, Leuven, Belgium, 1–2 June 1992.

Appl. Opt. (5)

Proc. IEEE (1)

K. E. Petersen, “Silicon as a mechanical material,” Proc. IEEE 70, 420–427 (1982).
[CrossRef]

Proc. Phys. (1)

G. Conforti, M. Brenci, A. Mencaglia, A. G. Mignani, A. M. Scheggi, “Multimode optic vibrometer,” Proc. Phys. 44, 194–200 (1989).

Other (6)

G. Bruhat, Cours de Physique Générale (Masson, Paris, 1965), Chap. X, pp. 196–202.

E. Peeters, S. Vergote, B. Puers, W. Sansen, “A combined silicon fusion and glass/silicon anodic bonding process for a uniaxial capacitive accelerometer,” presented at the MME’92 Third European Workshop on Micromachining, Micromechanisms and Microsystems, Leuven, Belgium, 1–2 June 1992.

A. Malki, P. Lecoy, J. Marty, C. Renouf, P. Ferdinand, “Procédé dispositif pour la mesure des vibrations d’une structure en mouvement,” International patent pending (1June1994).

E. Bois, S. Huard, G. Deboisde, “Capteurs à fibres optiques à référence intrinsèque pour mesure de positionnement sans contact,” in Proceedings of OPTO 87 Septiemes Journées Professionnelles de l’OPTOelectronique(ESI Publications, Paris, 1987), pp. 91–93.

D. R. Miers, D. Raj, J. W. Berthold, “Design and characterization of fiber optic accelerometer,” in Fiber Optic and Laser Sensors V, R. P. De Paula, E. Udd, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 838, 421–423 (1987).

G. Anglaret, R. Durantis, “A spectral bridge based method for WDM networks devoted intensity modulated optical sensors,” in Proceedings of EFOC/LAN 89 (European Fiber Optic Communications, Amsterdam, The Netherlands, 1989), pp. 220–222.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Head sensor, top view.

Fig. 2
Fig. 2

Principal cantilever positions.

Fig. 3
Fig. 3

Silicon cantilever with its support.

Fig. 4
Fig. 4

V groove and the fiber–cantilever distance.

Fig. 5
Fig. 5

Theoretical model of light diffraction from edges.

Fig. 6
Fig. 6

Geometrical model of calculation.

Fig. 7
Fig. 7

Normalized sensor transmittance comparison.

Fig. 8
Fig. 8

Sensor exploitation setup: WDM, wavelength-division multiplexing.

Fig. 9
Fig. 9

Sensor response to sinusoidal excitation.

Fig. 10
Fig. 10

Frequency response of the sensor.

Fig. 11
Fig. 11

Amplitude linearity of the sensor: CH, channel; div., division.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P = P 0 / 2 π 2 β 2 d 2 ,
ρ = [ 1 / ( 2 π ) ] { π + 2 arcsin ( δ z / a ) + ( 2 δ z / a 2 ) [ a 2 - ( δ z ) 2 ] 1 / 2 } .
P meas = ( P sens / P ref ) × ( P ref LED 1 / P ref LED 2 ) ,

Metrics