Abstract

We report on the design of a small spectrograph that is capable of imaging several thousand angstroms simultaneously at a moderate spectral resolution. The prototype instrument included a number of developmental items that were used to assess their utility in this and other applications. Some we would recommend using again, some we would not. In the configuration that was built and tested, the instantaneous wavelength range was chosen to be 3700–11,700 Å. However, the wavelength range could be selected for a lower wavelength, as low as ~1200 Å. The spectral imaging was achieved with an intensified-CCD focal-plane detector. The broad wavelength coverage was achieved with a matrix of four diffraction gratings and a custom-designed photocathode system. The photocathode was specially built to provide a response over the chosen broad wavelength range by use of a single image intensifier. The theoretical spectral resolution of the instrument varied from 12 to 20 Å depending on wavelength segment. A higher spectral resolution can be selected at the expense of total wavelength coverage. The optical system was designed to be moderately fast (f/6) when considered at the level of each of the four optical subchannels and suitable for use on relatively weak airglow signals. The instrument was designed to be readily portable, weighing 15 kg, with an envelope of 37 cm × 37 cm × 48 cm. The advantages and weaknesses of such an instrument are discussed, and improvements are suggested for specific applications. This study represents a stepping stone in the evolution of electronic spectrographs and leads to later designs that are currently being evaluated.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Torr, R. W. Basedow, D. G. Torr, “Imaging spectroscopy of the thermosphere from the Space Shuttle,” Appl. Opt. 21, 4130–4145 (1982).
    [CrossRef] [PubMed]
  2. M. R. Torr, R. W. Basedow, J. Mount, “An Imaging Spectrometric Observatory for Spacelab,” Astrophys. Space Sci. 92, 237–291 (1983).
    [CrossRef]
  3. M. R. Torr, J. Devlin, “Intensified charge coupled device for use as a spaceborne spectrographic image plane detector system,” Appl. Opt. 21, 3091–3108 (1982).
    [CrossRef] [PubMed]
  4. M. R. Torr, D. G. Torr, R. Baum, R. Spielmaker, “Intensified-CCD focal plane detector for space applications: a second generation,” Appl. Opt. 25, 2768–2777 (1986).
    [CrossRef] [PubMed]
  5. M. R. Torr, D. G. Torr, P. Bhatt, W. Swift, H. Dougani, “Ca+ emission in the sunlit ionosphere,” J. Geophys. Res. 95, 2379–2387 (1990).
    [CrossRef]
  6. D. G. Torr, M. R. Torr, P. G. Richards, “Thermospheric airglow emissions: a comparison of measurements from ATLAS-1 and theory,” Geophys. Res. Lett. 20, 519–522 (1993).
    [CrossRef]
  7. M. R. Torr, D. G. Torr, T. Chang, P. Richards, G. Germany, “The N2 Lyman Birge Hopfield dayglow from ATLAS-1,” J. Geophys. Res. 99, 21,397–21,407 (1994).
    [CrossRef]
  8. M. R. Torr, D. G. Torr, P. G. Richards, T. Chang, W. Swift, N. Li, “Thermospheric nitric oxide from ATLAS-1 and Spacelab 1 missions,” to be published in J. Geophys. Res.100 (1995).
    [CrossRef]
  9. D. G. Torr, M. R. Torr, W. Swift, J. Fennelly, G. Liu, “Measurements of OH (X2II) in the stratosphere by high resolution UV spectroscopy,” Geophys. Res. Lett. 14, 937–940 (1987).
    [CrossRef]
  10. M. R. Torr, D. G. Torr, “An imaging spectrometer for high resolution measurements of stratospheric trace constituents in the ultraviolet,” Appl. Opt. 27, 619–626 (1988).
    [CrossRef] [PubMed]
  11. F. M. Morgan, D. G. Torr, M. R. Torr, “Preliminary measurements of mesospheric OH X2II by ISO on ATLAS 1,” Geophys. Res. Lett. 20, 511–514 (1993).
    [CrossRef]
  12. G. S. Hayat, J. Flamand, M. Lacroix, A. Grillo, “Designing a new generation of analytical instruments around the new types of holographic diffraction grating,” Opt. Eng. 14, 420–425 (1975).
  13. D. G. Torr, M. R. Torr, M. Zukic, J. F. Spann, R. B. Johnson, “Ultraviolet Imager (UVI) for ISTP,” Opt. Eng. 32, 3060 (1993).
    [CrossRef]
  14. M. R. Torr, D. G. Torr, M. Zukic, R. B. Johnson, J. Ajello, P. Banks, K. Clark, K. Cole, G. Parks, B. Tsurutani, “A Far Ultraviolet Imager for the International Solar-Terrestrial Physics Mission,” to be published in Space Sci. Rev. (1995).
    [CrossRef]
  15. P. Bernhardt, “The NICARE experiments—an overview,” EOS 71, 1506 (1990).
  16. D. G. Torr, M. Zukic, C. Feng, A. Ahmad, W. Swift, “Miniaturized high-resolution NUV–VIS–NIR imaging spectrometer array for FAST SAT applications,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2266, 206 (1994).
  17. D. G. Torr, C. Feng, W. Swift, M. Zukic, “Design for a ground-based spectrometric facility for measuring the terrestrial dayglow from the near-ultraviolet to the near-infrared,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2266, 180 (1994).

1994 (1)

M. R. Torr, D. G. Torr, T. Chang, P. Richards, G. Germany, “The N2 Lyman Birge Hopfield dayglow from ATLAS-1,” J. Geophys. Res. 99, 21,397–21,407 (1994).
[CrossRef]

1993 (3)

D. G. Torr, M. R. Torr, P. G. Richards, “Thermospheric airglow emissions: a comparison of measurements from ATLAS-1 and theory,” Geophys. Res. Lett. 20, 519–522 (1993).
[CrossRef]

F. M. Morgan, D. G. Torr, M. R. Torr, “Preliminary measurements of mesospheric OH X2II by ISO on ATLAS 1,” Geophys. Res. Lett. 20, 511–514 (1993).
[CrossRef]

D. G. Torr, M. R. Torr, M. Zukic, J. F. Spann, R. B. Johnson, “Ultraviolet Imager (UVI) for ISTP,” Opt. Eng. 32, 3060 (1993).
[CrossRef]

1990 (2)

P. Bernhardt, “The NICARE experiments—an overview,” EOS 71, 1506 (1990).

M. R. Torr, D. G. Torr, P. Bhatt, W. Swift, H. Dougani, “Ca+ emission in the sunlit ionosphere,” J. Geophys. Res. 95, 2379–2387 (1990).
[CrossRef]

1988 (1)

1987 (1)

D. G. Torr, M. R. Torr, W. Swift, J. Fennelly, G. Liu, “Measurements of OH (X2II) in the stratosphere by high resolution UV spectroscopy,” Geophys. Res. Lett. 14, 937–940 (1987).
[CrossRef]

1986 (1)

1983 (1)

M. R. Torr, R. W. Basedow, J. Mount, “An Imaging Spectrometric Observatory for Spacelab,” Astrophys. Space Sci. 92, 237–291 (1983).
[CrossRef]

1982 (2)

1975 (1)

G. S. Hayat, J. Flamand, M. Lacroix, A. Grillo, “Designing a new generation of analytical instruments around the new types of holographic diffraction grating,” Opt. Eng. 14, 420–425 (1975).

Ahmad, A.

D. G. Torr, M. Zukic, C. Feng, A. Ahmad, W. Swift, “Miniaturized high-resolution NUV–VIS–NIR imaging spectrometer array for FAST SAT applications,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2266, 206 (1994).

Ajello, J.

M. R. Torr, D. G. Torr, M. Zukic, R. B. Johnson, J. Ajello, P. Banks, K. Clark, K. Cole, G. Parks, B. Tsurutani, “A Far Ultraviolet Imager for the International Solar-Terrestrial Physics Mission,” to be published in Space Sci. Rev. (1995).
[CrossRef]

Banks, P.

M. R. Torr, D. G. Torr, M. Zukic, R. B. Johnson, J. Ajello, P. Banks, K. Clark, K. Cole, G. Parks, B. Tsurutani, “A Far Ultraviolet Imager for the International Solar-Terrestrial Physics Mission,” to be published in Space Sci. Rev. (1995).
[CrossRef]

Basedow, R. W.

M. R. Torr, R. W. Basedow, J. Mount, “An Imaging Spectrometric Observatory for Spacelab,” Astrophys. Space Sci. 92, 237–291 (1983).
[CrossRef]

M. R. Torr, R. W. Basedow, D. G. Torr, “Imaging spectroscopy of the thermosphere from the Space Shuttle,” Appl. Opt. 21, 4130–4145 (1982).
[CrossRef] [PubMed]

Baum, R.

Bernhardt, P.

P. Bernhardt, “The NICARE experiments—an overview,” EOS 71, 1506 (1990).

Bhatt, P.

M. R. Torr, D. G. Torr, P. Bhatt, W. Swift, H. Dougani, “Ca+ emission in the sunlit ionosphere,” J. Geophys. Res. 95, 2379–2387 (1990).
[CrossRef]

Chang, T.

M. R. Torr, D. G. Torr, T. Chang, P. Richards, G. Germany, “The N2 Lyman Birge Hopfield dayglow from ATLAS-1,” J. Geophys. Res. 99, 21,397–21,407 (1994).
[CrossRef]

M. R. Torr, D. G. Torr, P. G. Richards, T. Chang, W. Swift, N. Li, “Thermospheric nitric oxide from ATLAS-1 and Spacelab 1 missions,” to be published in J. Geophys. Res.100 (1995).
[CrossRef]

Clark, K.

M. R. Torr, D. G. Torr, M. Zukic, R. B. Johnson, J. Ajello, P. Banks, K. Clark, K. Cole, G. Parks, B. Tsurutani, “A Far Ultraviolet Imager for the International Solar-Terrestrial Physics Mission,” to be published in Space Sci. Rev. (1995).
[CrossRef]

Cole, K.

M. R. Torr, D. G. Torr, M. Zukic, R. B. Johnson, J. Ajello, P. Banks, K. Clark, K. Cole, G. Parks, B. Tsurutani, “A Far Ultraviolet Imager for the International Solar-Terrestrial Physics Mission,” to be published in Space Sci. Rev. (1995).
[CrossRef]

Devlin, J.

Dougani, H.

M. R. Torr, D. G. Torr, P. Bhatt, W. Swift, H. Dougani, “Ca+ emission in the sunlit ionosphere,” J. Geophys. Res. 95, 2379–2387 (1990).
[CrossRef]

Feng, C.

D. G. Torr, M. Zukic, C. Feng, A. Ahmad, W. Swift, “Miniaturized high-resolution NUV–VIS–NIR imaging spectrometer array for FAST SAT applications,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2266, 206 (1994).

D. G. Torr, C. Feng, W. Swift, M. Zukic, “Design for a ground-based spectrometric facility for measuring the terrestrial dayglow from the near-ultraviolet to the near-infrared,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2266, 180 (1994).

Fennelly, J.

D. G. Torr, M. R. Torr, W. Swift, J. Fennelly, G. Liu, “Measurements of OH (X2II) in the stratosphere by high resolution UV spectroscopy,” Geophys. Res. Lett. 14, 937–940 (1987).
[CrossRef]

Flamand, J.

G. S. Hayat, J. Flamand, M. Lacroix, A. Grillo, “Designing a new generation of analytical instruments around the new types of holographic diffraction grating,” Opt. Eng. 14, 420–425 (1975).

Germany, G.

M. R. Torr, D. G. Torr, T. Chang, P. Richards, G. Germany, “The N2 Lyman Birge Hopfield dayglow from ATLAS-1,” J. Geophys. Res. 99, 21,397–21,407 (1994).
[CrossRef]

Grillo, A.

G. S. Hayat, J. Flamand, M. Lacroix, A. Grillo, “Designing a new generation of analytical instruments around the new types of holographic diffraction grating,” Opt. Eng. 14, 420–425 (1975).

Hayat, G. S.

G. S. Hayat, J. Flamand, M. Lacroix, A. Grillo, “Designing a new generation of analytical instruments around the new types of holographic diffraction grating,” Opt. Eng. 14, 420–425 (1975).

Johnson, R. B.

D. G. Torr, M. R. Torr, M. Zukic, J. F. Spann, R. B. Johnson, “Ultraviolet Imager (UVI) for ISTP,” Opt. Eng. 32, 3060 (1993).
[CrossRef]

M. R. Torr, D. G. Torr, M. Zukic, R. B. Johnson, J. Ajello, P. Banks, K. Clark, K. Cole, G. Parks, B. Tsurutani, “A Far Ultraviolet Imager for the International Solar-Terrestrial Physics Mission,” to be published in Space Sci. Rev. (1995).
[CrossRef]

Lacroix, M.

G. S. Hayat, J. Flamand, M. Lacroix, A. Grillo, “Designing a new generation of analytical instruments around the new types of holographic diffraction grating,” Opt. Eng. 14, 420–425 (1975).

Li, N.

M. R. Torr, D. G. Torr, P. G. Richards, T. Chang, W. Swift, N. Li, “Thermospheric nitric oxide from ATLAS-1 and Spacelab 1 missions,” to be published in J. Geophys. Res.100 (1995).
[CrossRef]

Liu, G.

D. G. Torr, M. R. Torr, W. Swift, J. Fennelly, G. Liu, “Measurements of OH (X2II) in the stratosphere by high resolution UV spectroscopy,” Geophys. Res. Lett. 14, 937–940 (1987).
[CrossRef]

Morgan, F. M.

F. M. Morgan, D. G. Torr, M. R. Torr, “Preliminary measurements of mesospheric OH X2II by ISO on ATLAS 1,” Geophys. Res. Lett. 20, 511–514 (1993).
[CrossRef]

Mount, J.

M. R. Torr, R. W. Basedow, J. Mount, “An Imaging Spectrometric Observatory for Spacelab,” Astrophys. Space Sci. 92, 237–291 (1983).
[CrossRef]

Parks, G.

M. R. Torr, D. G. Torr, M. Zukic, R. B. Johnson, J. Ajello, P. Banks, K. Clark, K. Cole, G. Parks, B. Tsurutani, “A Far Ultraviolet Imager for the International Solar-Terrestrial Physics Mission,” to be published in Space Sci. Rev. (1995).
[CrossRef]

Richards, P.

M. R. Torr, D. G. Torr, T. Chang, P. Richards, G. Germany, “The N2 Lyman Birge Hopfield dayglow from ATLAS-1,” J. Geophys. Res. 99, 21,397–21,407 (1994).
[CrossRef]

Richards, P. G.

D. G. Torr, M. R. Torr, P. G. Richards, “Thermospheric airglow emissions: a comparison of measurements from ATLAS-1 and theory,” Geophys. Res. Lett. 20, 519–522 (1993).
[CrossRef]

M. R. Torr, D. G. Torr, P. G. Richards, T. Chang, W. Swift, N. Li, “Thermospheric nitric oxide from ATLAS-1 and Spacelab 1 missions,” to be published in J. Geophys. Res.100 (1995).
[CrossRef]

Spann, J. F.

D. G. Torr, M. R. Torr, M. Zukic, J. F. Spann, R. B. Johnson, “Ultraviolet Imager (UVI) for ISTP,” Opt. Eng. 32, 3060 (1993).
[CrossRef]

Spielmaker, R.

Swift, W.

M. R. Torr, D. G. Torr, P. Bhatt, W. Swift, H. Dougani, “Ca+ emission in the sunlit ionosphere,” J. Geophys. Res. 95, 2379–2387 (1990).
[CrossRef]

D. G. Torr, M. R. Torr, W. Swift, J. Fennelly, G. Liu, “Measurements of OH (X2II) in the stratosphere by high resolution UV spectroscopy,” Geophys. Res. Lett. 14, 937–940 (1987).
[CrossRef]

M. R. Torr, D. G. Torr, P. G. Richards, T. Chang, W. Swift, N. Li, “Thermospheric nitric oxide from ATLAS-1 and Spacelab 1 missions,” to be published in J. Geophys. Res.100 (1995).
[CrossRef]

D. G. Torr, M. Zukic, C. Feng, A. Ahmad, W. Swift, “Miniaturized high-resolution NUV–VIS–NIR imaging spectrometer array for FAST SAT applications,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2266, 206 (1994).

D. G. Torr, C. Feng, W. Swift, M. Zukic, “Design for a ground-based spectrometric facility for measuring the terrestrial dayglow from the near-ultraviolet to the near-infrared,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2266, 180 (1994).

Torr, D. G.

M. R. Torr, D. G. Torr, T. Chang, P. Richards, G. Germany, “The N2 Lyman Birge Hopfield dayglow from ATLAS-1,” J. Geophys. Res. 99, 21,397–21,407 (1994).
[CrossRef]

D. G. Torr, M. R. Torr, P. G. Richards, “Thermospheric airglow emissions: a comparison of measurements from ATLAS-1 and theory,” Geophys. Res. Lett. 20, 519–522 (1993).
[CrossRef]

F. M. Morgan, D. G. Torr, M. R. Torr, “Preliminary measurements of mesospheric OH X2II by ISO on ATLAS 1,” Geophys. Res. Lett. 20, 511–514 (1993).
[CrossRef]

D. G. Torr, M. R. Torr, M. Zukic, J. F. Spann, R. B. Johnson, “Ultraviolet Imager (UVI) for ISTP,” Opt. Eng. 32, 3060 (1993).
[CrossRef]

M. R. Torr, D. G. Torr, P. Bhatt, W. Swift, H. Dougani, “Ca+ emission in the sunlit ionosphere,” J. Geophys. Res. 95, 2379–2387 (1990).
[CrossRef]

M. R. Torr, D. G. Torr, “An imaging spectrometer for high resolution measurements of stratospheric trace constituents in the ultraviolet,” Appl. Opt. 27, 619–626 (1988).
[CrossRef] [PubMed]

D. G. Torr, M. R. Torr, W. Swift, J. Fennelly, G. Liu, “Measurements of OH (X2II) in the stratosphere by high resolution UV spectroscopy,” Geophys. Res. Lett. 14, 937–940 (1987).
[CrossRef]

M. R. Torr, D. G. Torr, R. Baum, R. Spielmaker, “Intensified-CCD focal plane detector for space applications: a second generation,” Appl. Opt. 25, 2768–2777 (1986).
[CrossRef] [PubMed]

M. R. Torr, R. W. Basedow, D. G. Torr, “Imaging spectroscopy of the thermosphere from the Space Shuttle,” Appl. Opt. 21, 4130–4145 (1982).
[CrossRef] [PubMed]

M. R. Torr, D. G. Torr, P. G. Richards, T. Chang, W. Swift, N. Li, “Thermospheric nitric oxide from ATLAS-1 and Spacelab 1 missions,” to be published in J. Geophys. Res.100 (1995).
[CrossRef]

D. G. Torr, C. Feng, W. Swift, M. Zukic, “Design for a ground-based spectrometric facility for measuring the terrestrial dayglow from the near-ultraviolet to the near-infrared,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2266, 180 (1994).

D. G. Torr, M. Zukic, C. Feng, A. Ahmad, W. Swift, “Miniaturized high-resolution NUV–VIS–NIR imaging spectrometer array for FAST SAT applications,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2266, 206 (1994).

M. R. Torr, D. G. Torr, M. Zukic, R. B. Johnson, J. Ajello, P. Banks, K. Clark, K. Cole, G. Parks, B. Tsurutani, “A Far Ultraviolet Imager for the International Solar-Terrestrial Physics Mission,” to be published in Space Sci. Rev. (1995).
[CrossRef]

Torr, M. R.

M. R. Torr, D. G. Torr, T. Chang, P. Richards, G. Germany, “The N2 Lyman Birge Hopfield dayglow from ATLAS-1,” J. Geophys. Res. 99, 21,397–21,407 (1994).
[CrossRef]

D. G. Torr, M. R. Torr, P. G. Richards, “Thermospheric airglow emissions: a comparison of measurements from ATLAS-1 and theory,” Geophys. Res. Lett. 20, 519–522 (1993).
[CrossRef]

D. G. Torr, M. R. Torr, M. Zukic, J. F. Spann, R. B. Johnson, “Ultraviolet Imager (UVI) for ISTP,” Opt. Eng. 32, 3060 (1993).
[CrossRef]

F. M. Morgan, D. G. Torr, M. R. Torr, “Preliminary measurements of mesospheric OH X2II by ISO on ATLAS 1,” Geophys. Res. Lett. 20, 511–514 (1993).
[CrossRef]

M. R. Torr, D. G. Torr, P. Bhatt, W. Swift, H. Dougani, “Ca+ emission in the sunlit ionosphere,” J. Geophys. Res. 95, 2379–2387 (1990).
[CrossRef]

M. R. Torr, D. G. Torr, “An imaging spectrometer for high resolution measurements of stratospheric trace constituents in the ultraviolet,” Appl. Opt. 27, 619–626 (1988).
[CrossRef] [PubMed]

D. G. Torr, M. R. Torr, W. Swift, J. Fennelly, G. Liu, “Measurements of OH (X2II) in the stratosphere by high resolution UV spectroscopy,” Geophys. Res. Lett. 14, 937–940 (1987).
[CrossRef]

M. R. Torr, D. G. Torr, R. Baum, R. Spielmaker, “Intensified-CCD focal plane detector for space applications: a second generation,” Appl. Opt. 25, 2768–2777 (1986).
[CrossRef] [PubMed]

M. R. Torr, R. W. Basedow, J. Mount, “An Imaging Spectrometric Observatory for Spacelab,” Astrophys. Space Sci. 92, 237–291 (1983).
[CrossRef]

M. R. Torr, J. Devlin, “Intensified charge coupled device for use as a spaceborne spectrographic image plane detector system,” Appl. Opt. 21, 3091–3108 (1982).
[CrossRef] [PubMed]

M. R. Torr, R. W. Basedow, D. G. Torr, “Imaging spectroscopy of the thermosphere from the Space Shuttle,” Appl. Opt. 21, 4130–4145 (1982).
[CrossRef] [PubMed]

M. R. Torr, D. G. Torr, P. G. Richards, T. Chang, W. Swift, N. Li, “Thermospheric nitric oxide from ATLAS-1 and Spacelab 1 missions,” to be published in J. Geophys. Res.100 (1995).
[CrossRef]

M. R. Torr, D. G. Torr, M. Zukic, R. B. Johnson, J. Ajello, P. Banks, K. Clark, K. Cole, G. Parks, B. Tsurutani, “A Far Ultraviolet Imager for the International Solar-Terrestrial Physics Mission,” to be published in Space Sci. Rev. (1995).
[CrossRef]

Tsurutani, B.

M. R. Torr, D. G. Torr, M. Zukic, R. B. Johnson, J. Ajello, P. Banks, K. Clark, K. Cole, G. Parks, B. Tsurutani, “A Far Ultraviolet Imager for the International Solar-Terrestrial Physics Mission,” to be published in Space Sci. Rev. (1995).
[CrossRef]

Zukic, M.

D. G. Torr, M. R. Torr, M. Zukic, J. F. Spann, R. B. Johnson, “Ultraviolet Imager (UVI) for ISTP,” Opt. Eng. 32, 3060 (1993).
[CrossRef]

M. R. Torr, D. G. Torr, M. Zukic, R. B. Johnson, J. Ajello, P. Banks, K. Clark, K. Cole, G. Parks, B. Tsurutani, “A Far Ultraviolet Imager for the International Solar-Terrestrial Physics Mission,” to be published in Space Sci. Rev. (1995).
[CrossRef]

D. G. Torr, M. Zukic, C. Feng, A. Ahmad, W. Swift, “Miniaturized high-resolution NUV–VIS–NIR imaging spectrometer array for FAST SAT applications,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2266, 206 (1994).

D. G. Torr, C. Feng, W. Swift, M. Zukic, “Design for a ground-based spectrometric facility for measuring the terrestrial dayglow from the near-ultraviolet to the near-infrared,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2266, 180 (1994).

Appl. Opt. (4)

Astrophys. Space Sci. (1)

M. R. Torr, R. W. Basedow, J. Mount, “An Imaging Spectrometric Observatory for Spacelab,” Astrophys. Space Sci. 92, 237–291 (1983).
[CrossRef]

EOS (1)

P. Bernhardt, “The NICARE experiments—an overview,” EOS 71, 1506 (1990).

Geophys. Res. Lett. (3)

D. G. Torr, M. R. Torr, P. G. Richards, “Thermospheric airglow emissions: a comparison of measurements from ATLAS-1 and theory,” Geophys. Res. Lett. 20, 519–522 (1993).
[CrossRef]

D. G. Torr, M. R. Torr, W. Swift, J. Fennelly, G. Liu, “Measurements of OH (X2II) in the stratosphere by high resolution UV spectroscopy,” Geophys. Res. Lett. 14, 937–940 (1987).
[CrossRef]

F. M. Morgan, D. G. Torr, M. R. Torr, “Preliminary measurements of mesospheric OH X2II by ISO on ATLAS 1,” Geophys. Res. Lett. 20, 511–514 (1993).
[CrossRef]

J. Geophys. Res. (2)

M. R. Torr, D. G. Torr, P. Bhatt, W. Swift, H. Dougani, “Ca+ emission in the sunlit ionosphere,” J. Geophys. Res. 95, 2379–2387 (1990).
[CrossRef]

M. R. Torr, D. G. Torr, T. Chang, P. Richards, G. Germany, “The N2 Lyman Birge Hopfield dayglow from ATLAS-1,” J. Geophys. Res. 99, 21,397–21,407 (1994).
[CrossRef]

Opt. Eng. (2)

G. S. Hayat, J. Flamand, M. Lacroix, A. Grillo, “Designing a new generation of analytical instruments around the new types of holographic diffraction grating,” Opt. Eng. 14, 420–425 (1975).

D. G. Torr, M. R. Torr, M. Zukic, J. F. Spann, R. B. Johnson, “Ultraviolet Imager (UVI) for ISTP,” Opt. Eng. 32, 3060 (1993).
[CrossRef]

Other (4)

M. R. Torr, D. G. Torr, M. Zukic, R. B. Johnson, J. Ajello, P. Banks, K. Clark, K. Cole, G. Parks, B. Tsurutani, “A Far Ultraviolet Imager for the International Solar-Terrestrial Physics Mission,” to be published in Space Sci. Rev. (1995).
[CrossRef]

M. R. Torr, D. G. Torr, P. G. Richards, T. Chang, W. Swift, N. Li, “Thermospheric nitric oxide from ATLAS-1 and Spacelab 1 missions,” to be published in J. Geophys. Res.100 (1995).
[CrossRef]

D. G. Torr, M. Zukic, C. Feng, A. Ahmad, W. Swift, “Miniaturized high-resolution NUV–VIS–NIR imaging spectrometer array for FAST SAT applications,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2266, 206 (1994).

D. G. Torr, C. Feng, W. Swift, M. Zukic, “Design for a ground-based spectrometric facility for measuring the terrestrial dayglow from the near-ultraviolet to the near-infrared,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2266, 180 (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Example of simultaneous spectral/spatial imaging made with the ISO from the Spacelab 1 mission (December 1983). A portion of the spectrum that includes the nitric-oxide gamma bands with adjacent 2-km-wide segments imaged simultaneously in the altitude dimension is shown.

Fig. 2
Fig. 2

Example of a spectral image acquired with the ISO on the ATLAS-1 mission in March 1992, showing a wavelength and altitude region similar to that shown in Fig. 1.

Fig. 3
Fig. 3

Example of a simultaneously acquired high-resolution image of a 9.2-Å segment that includes several stratospheric OH rotational emission lines. The extracted OH lines are shown along the bottom of the figure (from Torr et al.9).

Fig. 4
Fig. 4

Simultaneous spectral/spatial image of OH A 2∑–X 2II (0, 0) band spectra extracted from limb-scan observations. The tangent-ray height is given in the upper corner of each frame and covers 70–80 km (from Morgan et al.11).

Fig. 5
Fig. 5

Optical configuration of a compact imaging spectrometer.

Fig. 6
Fig. 6

(a) Configuration in which a grating is used showing the holographic grating parameters used in Eqs. (1)(4) (from Ref. 12). (b) Configuration in which a grating is ruled, showing the parameters used in Eqs. (5)(8) (from Ref. 12).

Fig. 7
Fig. 7

Location of focal plane for each of the four gratings before the axial position grating is adjusted.

Fig. 8
Fig. 8

(a) Grating matrix and (b) format of the image on a detector.

Fig. 9
Fig. 9

Blur spot-size diagrams for an off-axis parabolic telescope mirror. Spots are shown for 0°, 1°, and 2° off axis and for ±0.1 and ±0.2 mm from the focus.

Fig. 10
Fig. 10

Quantum efficiency of S20 and S1 photocathodes used on the two halves of the detector.

Fig. 11
Fig. 11

Photon gain of the image intensifier for both the S1 and S20 halves as a function of MCP voltage.

Fig. 12
Fig. 12

Stability of the MCP high-voltage power supply at various gain settings, each sampled for 30 min. The average stability over 10 h is 0.07 V.

Fig. 13
Fig. 13

Improvement obtained in CCD noise by use of correlated double sampling: a, earlier design is here a floating-gate amplifier reset at the beginning of each horizontal line is used; b, correlated double sampling; c, effect of the low-pass filter with correlated double sampling.

Fig. 14
Fig. 14

Example of a raw detector image obtained by looking at a screen illuminated by various line source lamps.

Fig. 15
Fig. 15

Examples of a simultaneous spectrum obtained in a laboratory by viewing mercury and argon line sources.

Tables (3)

Tables Icon

Table 1 Summary of Optical Parameters

Tables Icon

Table 2 Summary of Holographic Parametersa

Tables Icon

Table 3 Summary of Measured Wavelength Performance

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

N m λ = sin α ± sin β ,
cos 2 α l a - cos α R + cos 2 β l b - cos β R - m λ C f λ 0 = 0 ,
1 l a - cos α R + 1 l b - cos β R - m λ C 0 λ 0 = 0.
sin α l a ( cos 2 α l a - cos α R ) + sin β l b ( cos 2     β l b - cos β R ) - m λ C c λ 0 = 0.
N λ 0 = sin γ - sin δ ,
C f = cos 2 γ l c - cos γ R - ( cos 2 δ l d - cos δ R ) ,
C a = 1 l c - cos γ R - ( 1 l d - cos δ R ) ,
C c = sin γ l c ( cos 2 γ l c - cos γ R ) - sin δ l d ( cos 2 δ l d - cos δ R ) .

Metrics