Abstract

We have used a kinoform to increase the beam-power utilization in an excimer-laser-machining experiment. The kinoform creates the pattern to be machined. Thus less power is wasted on the blocking parts of a shadow mask. To achieve as smooth an intensity profile as possible, the kinoform was also used together with a microlens-array beam homogenizer. We discuss the intensity distributions of the patterns created by the kinoform with and without the beam homogenizer as well as the design of the kinoform and the homogenizer, with emphasis on the relation to the coherence properties of the laser beam.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Znotins, “Industrial applications of excimer lasers,” in Excimer Lasers and Optics, T. S. Luk, ed., Proc. Soc. Photo-Opt. Instrum. Eng.710, 55–62 (1986).
  2. M. Gower, P. T. Rumsby, D. T. Thomas, “Novel applications of excimer lasers for fabricating biomedical and sensor products,” in Excimer Lasers: Applications, Beam Delivery Systems, and Laser Design, J. A. Greer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1835, 133–142 (1992).
  3. G. E. Wolbold, C. L. Tessler, D. J. Turdyn, “Characterization, set-up and control of a manufacturing laser ablation tool and process,” in Excimer Lasers: Applications, Beam Delivery Systems, and Laser Design, J. A. Greer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1835, 62–69 (1992).
  4. L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
    [CrossRef]
  5. A. Engel, J. Steffen, G. Herziger, “Laser machining with modulated zone plates,” Appl. Opt. 13, 269–273 (1974).
    [CrossRef] [PubMed]
  6. M. Ekberg, M. Larsson, A. Bolle, S. Hård, “Nd:YAG laser machining with multilevel resist kinoforms,” Appl. Opt. 30, 3604–3606 (1991).
    [CrossRef] [PubMed]
  7. S. Kiwata, I. Hikima, Y. Ichihara, S. Watanabe, “Spatial coherence of KrF excimer lasers,” Appl. Opt. 31, 387–396 (1992).
    [CrossRef]
  8. M. Ekberg, M. Larsson, S. Hård, J. Turunen, M. R. Taghizadeh, J. Westerholm, A. Vasava, “Multilevel grating array illuminators manufactured by electron-beam lithography,” Opt. Commun. 88, 37–41 (1992).
    [CrossRef]
  9. M. Ekberg, M. Larsson, S. Hård, B. Nilsson, “Multilevel phase holograms manufactured by electron-beam lithography,” Opt. Lett. 15, 568–569 (1990).
    [CrossRef] [PubMed]
  10. M. Ekberg, M. Larsson, F. Nikolajeff, S. Hård, “Proximity-compensated blazed transmission grating manufacture with direct-writing electron-beam lithography,” Appl. Opt. 33, 103–107 (1994).
    [CrossRef] [PubMed]
  11. M. Larsson, M. Ekberg, F. Nikolajeff, S. Hård, “Successive development optimization of resist kinoforms manufactured with direct-writing electron-beam lithography,” Appl. Opt. 33, 1176–1179 (1994).
    [CrossRef] [PubMed]
  12. M. Wei, E. H. Anderson, D. T. Attwood, “Fabrication of ultrahigh resolution gratings for x-ray spectroscopy,” in Diffractive Optics, Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 91–94.

1994 (2)

1992 (2)

M. Ekberg, M. Larsson, S. Hård, J. Turunen, M. R. Taghizadeh, J. Westerholm, A. Vasava, “Multilevel grating array illuminators manufactured by electron-beam lithography,” Opt. Commun. 88, 37–41 (1992).
[CrossRef]

S. Kiwata, I. Hikima, Y. Ichihara, S. Watanabe, “Spatial coherence of KrF excimer lasers,” Appl. Opt. 31, 387–396 (1992).
[CrossRef]

1991 (1)

1990 (1)

1974 (1)

1969 (1)

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Anderson, E. H.

M. Wei, E. H. Anderson, D. T. Attwood, “Fabrication of ultrahigh resolution gratings for x-ray spectroscopy,” in Diffractive Optics, Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 91–94.

Attwood, D. T.

M. Wei, E. H. Anderson, D. T. Attwood, “Fabrication of ultrahigh resolution gratings for x-ray spectroscopy,” in Diffractive Optics, Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 91–94.

Bolle, A.

Ekberg, M.

Engel, A.

Gower, M.

M. Gower, P. T. Rumsby, D. T. Thomas, “Novel applications of excimer lasers for fabricating biomedical and sensor products,” in Excimer Lasers: Applications, Beam Delivery Systems, and Laser Design, J. A. Greer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1835, 133–142 (1992).

Hård, S.

Herziger, G.

Hikima, I.

Hirsch, P. M.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Ichihara, Y.

Jordan, J. A.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Kiwata, S.

Larsson, M.

Lesem, L. B.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Nikolajeff, F.

Nilsson, B.

Rumsby, P. T.

M. Gower, P. T. Rumsby, D. T. Thomas, “Novel applications of excimer lasers for fabricating biomedical and sensor products,” in Excimer Lasers: Applications, Beam Delivery Systems, and Laser Design, J. A. Greer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1835, 133–142 (1992).

Steffen, J.

Taghizadeh, M. R.

M. Ekberg, M. Larsson, S. Hård, J. Turunen, M. R. Taghizadeh, J. Westerholm, A. Vasava, “Multilevel grating array illuminators manufactured by electron-beam lithography,” Opt. Commun. 88, 37–41 (1992).
[CrossRef]

Tessler, C. L.

G. E. Wolbold, C. L. Tessler, D. J. Turdyn, “Characterization, set-up and control of a manufacturing laser ablation tool and process,” in Excimer Lasers: Applications, Beam Delivery Systems, and Laser Design, J. A. Greer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1835, 62–69 (1992).

Thomas, D. T.

M. Gower, P. T. Rumsby, D. T. Thomas, “Novel applications of excimer lasers for fabricating biomedical and sensor products,” in Excimer Lasers: Applications, Beam Delivery Systems, and Laser Design, J. A. Greer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1835, 133–142 (1992).

Turdyn, D. J.

G. E. Wolbold, C. L. Tessler, D. J. Turdyn, “Characterization, set-up and control of a manufacturing laser ablation tool and process,” in Excimer Lasers: Applications, Beam Delivery Systems, and Laser Design, J. A. Greer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1835, 62–69 (1992).

Turunen, J.

M. Ekberg, M. Larsson, S. Hård, J. Turunen, M. R. Taghizadeh, J. Westerholm, A. Vasava, “Multilevel grating array illuminators manufactured by electron-beam lithography,” Opt. Commun. 88, 37–41 (1992).
[CrossRef]

Vasava, A.

M. Ekberg, M. Larsson, S. Hård, J. Turunen, M. R. Taghizadeh, J. Westerholm, A. Vasava, “Multilevel grating array illuminators manufactured by electron-beam lithography,” Opt. Commun. 88, 37–41 (1992).
[CrossRef]

Watanabe, S.

Wei, M.

M. Wei, E. H. Anderson, D. T. Attwood, “Fabrication of ultrahigh resolution gratings for x-ray spectroscopy,” in Diffractive Optics, Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 91–94.

Westerholm, J.

M. Ekberg, M. Larsson, S. Hård, J. Turunen, M. R. Taghizadeh, J. Westerholm, A. Vasava, “Multilevel grating array illuminators manufactured by electron-beam lithography,” Opt. Commun. 88, 37–41 (1992).
[CrossRef]

Wolbold, G. E.

G. E. Wolbold, C. L. Tessler, D. J. Turdyn, “Characterization, set-up and control of a manufacturing laser ablation tool and process,” in Excimer Lasers: Applications, Beam Delivery Systems, and Laser Design, J. A. Greer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1835, 62–69 (1992).

Znotins, T.

T. Znotins, “Industrial applications of excimer lasers,” in Excimer Lasers and Optics, T. S. Luk, ed., Proc. Soc. Photo-Opt. Instrum. Eng.710, 55–62 (1986).

Appl. Opt. (5)

IBM J. Res. Dev. (1)

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Opt. Commun. (1)

M. Ekberg, M. Larsson, S. Hård, J. Turunen, M. R. Taghizadeh, J. Westerholm, A. Vasava, “Multilevel grating array illuminators manufactured by electron-beam lithography,” Opt. Commun. 88, 37–41 (1992).
[CrossRef]

Opt. Lett. (1)

Other (4)

M. Wei, E. H. Anderson, D. T. Attwood, “Fabrication of ultrahigh resolution gratings for x-ray spectroscopy,” in Diffractive Optics, Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 91–94.

T. Znotins, “Industrial applications of excimer lasers,” in Excimer Lasers and Optics, T. S. Luk, ed., Proc. Soc. Photo-Opt. Instrum. Eng.710, 55–62 (1986).

M. Gower, P. T. Rumsby, D. T. Thomas, “Novel applications of excimer lasers for fabricating biomedical and sensor products,” in Excimer Lasers: Applications, Beam Delivery Systems, and Laser Design, J. A. Greer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1835, 133–142 (1992).

G. E. Wolbold, C. L. Tessler, D. J. Turdyn, “Characterization, set-up and control of a manufacturing laser ablation tool and process,” in Excimer Lasers: Applications, Beam Delivery Systems, and Laser Design, J. A. Greer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1835, 62–69 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Test pattern to be machined. The ratio Φ:l is 1:8.7.

Fig. 2
Fig. 2

Optical setup for shaping of the coherence areas, focusing, and formation of a kinoform diffraction pattern on a mask (M). CL1 (f = 315 mm) and CL2 (f = 104 mm) are cylindrical lenses compressing the beam, and L1 is a spherical focusing lens (f = 460 mm). The kinoform is denoted by K.

Fig. 3
Fig. 3

Optical setup for the diffraction-pattern generation on the work piece (wp). K, kinoform; M, four-hole mask; L2, field lens (f = 180 mm); L3, mask imaging lens (f = 70 mm).

Fig. 4
Fig. 4

Beam homogenizer, which consists of an array of square microlenses that are 80 μm wide. The focusing lens in front of the homogenizer makes the contributions from each microlens overlap in the focal plane of the focusing lens. The dimensions of the homogenized plane are inversely proportional to the f-number of the microlenses.

Fig. 5
Fig. 5

(a) Four-hole pattern machined in a 50-μm polyimide film and a 12-μm layer of glue on a copper substrate. The pattern is machined down into the copper. The emitted laser-beam pulse energy was 370 mJ, and the total pulse energy on the work piece was 10 mJ, which is equivalent to a fluence of ~6 J/cm2. The number of pulses was 150, at a repetition rate of 10 Hz. The hole diameter is 230 μm. The substrate was not cleaned after machining, and the dark areas around each hole are probably debris from the ablation. The debris wears off very easily, and the scratches are due to handling. (b), (c) Magnified hole focusing on (b) the polyimide surface and (c) the bottom of the hole.

Fig. 6
Fig. 6

Intensity distribution in the mask plane before masking with a kinoform. The lower diagram shows an intensity plot along a line that runs from the lower left to the upper right of the upper plot. This coincides with the horizontal direction in the optical setup.

Fig. 7
Fig. 7

Intensity distribution in the mask plane before masking with a kinoform together with a homogenizer. The lower diagram shows an intensity plot along a line that runs from the lower left to the upper right of the upper plot. This coincides with the horizontal direction in the optical setup.

Metrics