Abstract

There is a requirement for the controlled testing of passive infrared remote-sensing vapor detectors. The driving mechanism for the operation of these sensors is the small temperature difference ΔT that occurs between the target vapor and the background. Natural ΔT’s, ranging from a fraction of a degree Kelvin to 20 K or more, have to be duplicated in the laboratory with the vapor contained in a cell. It is shown that the windows of the cell nonlinearly affect the measurements. A proposal is made for a new type of vapor cell, the ectocell, which effectively eliminates the window problems for differential measurements.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Simonis, W. Gavert, D. Hoock, B. Jette, F. Kantrowitz, B. Sadler, F. Zegel, “XM21 Technical Advisory Team report,”16December1991. Available from the Project Manager for NBC Defense Systems, Attn.: AMCPM-NN, Aberdeen Proving Ground, Md. 21010-5423.
  2. D. F. Flanigan, “Detection of organic vapors with active and passive sensors: a comparison,” Appl. Opt. 25, 4253–4259 (1986).
    [CrossRef] [PubMed]
  3. D. Gladden, J. White, S. Brimhall, M. Marshall, A. Bruxton, “Abbreviated test report for the RRP chamber valildation—DPG phase II of the XM21 remote sensing chemical agent alarm.” Available from U.S. Army Test and Evaluation Command, Troop Support Division, Attn.: AMSTE-TA-TS, Aberdeen Proving Ground, Md. 21005-5055.
  4. D. F. Flanigan, “Chamber optics for testing passive remote sensing vapor detectors,” ERDEC-TR-127 (Defense Technical Information Center, Cameron Station, Alexandria, Va., 1993).
  5. B. T. Smith, “Summary review of technical report: chamber optics for testing passive remote sensing vapor detectors,” (Battelle, Columbus, Oh., 1993). Available from the Project Manager for NBC Defense Systems, Attn.: AMCPM-NN, Aberdeen Proving Ground, Md. 21010-5423.
  6. W. L. Wolfe, “Radiation theory,” in The Infrared Handbook, W. L. Wolfe, G. J. Zizzis, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1985), pp. 1–29.

1986

Brimhall, S.

D. Gladden, J. White, S. Brimhall, M. Marshall, A. Bruxton, “Abbreviated test report for the RRP chamber valildation—DPG phase II of the XM21 remote sensing chemical agent alarm.” Available from U.S. Army Test and Evaluation Command, Troop Support Division, Attn.: AMSTE-TA-TS, Aberdeen Proving Ground, Md. 21005-5055.

Bruxton, A.

D. Gladden, J. White, S. Brimhall, M. Marshall, A. Bruxton, “Abbreviated test report for the RRP chamber valildation—DPG phase II of the XM21 remote sensing chemical agent alarm.” Available from U.S. Army Test and Evaluation Command, Troop Support Division, Attn.: AMSTE-TA-TS, Aberdeen Proving Ground, Md. 21005-5055.

Flanigan, D. F.

D. F. Flanigan, “Detection of organic vapors with active and passive sensors: a comparison,” Appl. Opt. 25, 4253–4259 (1986).
[CrossRef] [PubMed]

D. F. Flanigan, “Chamber optics for testing passive remote sensing vapor detectors,” ERDEC-TR-127 (Defense Technical Information Center, Cameron Station, Alexandria, Va., 1993).

Gavert, W.

G. J. Simonis, W. Gavert, D. Hoock, B. Jette, F. Kantrowitz, B. Sadler, F. Zegel, “XM21 Technical Advisory Team report,”16December1991. Available from the Project Manager for NBC Defense Systems, Attn.: AMCPM-NN, Aberdeen Proving Ground, Md. 21010-5423.

Gladden, D.

D. Gladden, J. White, S. Brimhall, M. Marshall, A. Bruxton, “Abbreviated test report for the RRP chamber valildation—DPG phase II of the XM21 remote sensing chemical agent alarm.” Available from U.S. Army Test and Evaluation Command, Troop Support Division, Attn.: AMSTE-TA-TS, Aberdeen Proving Ground, Md. 21005-5055.

Hoock, D.

G. J. Simonis, W. Gavert, D. Hoock, B. Jette, F. Kantrowitz, B. Sadler, F. Zegel, “XM21 Technical Advisory Team report,”16December1991. Available from the Project Manager for NBC Defense Systems, Attn.: AMCPM-NN, Aberdeen Proving Ground, Md. 21010-5423.

Jette, B.

G. J. Simonis, W. Gavert, D. Hoock, B. Jette, F. Kantrowitz, B. Sadler, F. Zegel, “XM21 Technical Advisory Team report,”16December1991. Available from the Project Manager for NBC Defense Systems, Attn.: AMCPM-NN, Aberdeen Proving Ground, Md. 21010-5423.

Kantrowitz, F.

G. J. Simonis, W. Gavert, D. Hoock, B. Jette, F. Kantrowitz, B. Sadler, F. Zegel, “XM21 Technical Advisory Team report,”16December1991. Available from the Project Manager for NBC Defense Systems, Attn.: AMCPM-NN, Aberdeen Proving Ground, Md. 21010-5423.

Marshall, M.

D. Gladden, J. White, S. Brimhall, M. Marshall, A. Bruxton, “Abbreviated test report for the RRP chamber valildation—DPG phase II of the XM21 remote sensing chemical agent alarm.” Available from U.S. Army Test and Evaluation Command, Troop Support Division, Attn.: AMSTE-TA-TS, Aberdeen Proving Ground, Md. 21005-5055.

Sadler, B.

G. J. Simonis, W. Gavert, D. Hoock, B. Jette, F. Kantrowitz, B. Sadler, F. Zegel, “XM21 Technical Advisory Team report,”16December1991. Available from the Project Manager for NBC Defense Systems, Attn.: AMCPM-NN, Aberdeen Proving Ground, Md. 21010-5423.

Simonis, G. J.

G. J. Simonis, W. Gavert, D. Hoock, B. Jette, F. Kantrowitz, B. Sadler, F. Zegel, “XM21 Technical Advisory Team report,”16December1991. Available from the Project Manager for NBC Defense Systems, Attn.: AMCPM-NN, Aberdeen Proving Ground, Md. 21010-5423.

Smith, B. T.

B. T. Smith, “Summary review of technical report: chamber optics for testing passive remote sensing vapor detectors,” (Battelle, Columbus, Oh., 1993). Available from the Project Manager for NBC Defense Systems, Attn.: AMCPM-NN, Aberdeen Proving Ground, Md. 21010-5423.

White, J.

D. Gladden, J. White, S. Brimhall, M. Marshall, A. Bruxton, “Abbreviated test report for the RRP chamber valildation—DPG phase II of the XM21 remote sensing chemical agent alarm.” Available from U.S. Army Test and Evaluation Command, Troop Support Division, Attn.: AMSTE-TA-TS, Aberdeen Proving Ground, Md. 21005-5055.

Wolfe, W. L.

W. L. Wolfe, “Radiation theory,” in The Infrared Handbook, W. L. Wolfe, G. J. Zizzis, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1985), pp. 1–29.

Zegel, F.

G. J. Simonis, W. Gavert, D. Hoock, B. Jette, F. Kantrowitz, B. Sadler, F. Zegel, “XM21 Technical Advisory Team report,”16December1991. Available from the Project Manager for NBC Defense Systems, Attn.: AMCPM-NN, Aberdeen Proving Ground, Md. 21010-5423.

Appl. Opt.

Other

D. Gladden, J. White, S. Brimhall, M. Marshall, A. Bruxton, “Abbreviated test report for the RRP chamber valildation—DPG phase II of the XM21 remote sensing chemical agent alarm.” Available from U.S. Army Test and Evaluation Command, Troop Support Division, Attn.: AMSTE-TA-TS, Aberdeen Proving Ground, Md. 21005-5055.

D. F. Flanigan, “Chamber optics for testing passive remote sensing vapor detectors,” ERDEC-TR-127 (Defense Technical Information Center, Cameron Station, Alexandria, Va., 1993).

B. T. Smith, “Summary review of technical report: chamber optics for testing passive remote sensing vapor detectors,” (Battelle, Columbus, Oh., 1993). Available from the Project Manager for NBC Defense Systems, Attn.: AMCPM-NN, Aberdeen Proving Ground, Md. 21010-5423.

W. L. Wolfe, “Radiation theory,” in The Infrared Handbook, W. L. Wolfe, G. J. Zizzis, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1985), pp. 1–29.

G. J. Simonis, W. Gavert, D. Hoock, B. Jette, F. Kantrowitz, B. Sadler, F. Zegel, “XM21 Technical Advisory Team report,”16December1991. Available from the Project Manager for NBC Defense Systems, Attn.: AMCPM-NN, Aberdeen Proving Ground, Md. 21010-5423.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Radiance quantities associated with a single layer.

Fig. 2
Fig. 2

Simplest conventional vapor cell. Each point on the source emits a wave that at least fills the entrance aperture of the sensor, and the source at least fills the FOV of the sensor.

Fig. 3
Fig. 3

Ectocell.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Δ L = k 1 L V k 2 L bg ,
ε + ρ + τ = 1 ,
L n = τ n L n 1 + ε n L n bb + ρ n L n + 1 ,
L 1 = L bg bb
L 2 = ρ 2 L 3 + τ 2 L 1 + ε 2 L 2 bb ,
L 3 = ε 3 L 3 bb + τ 3 L 2 ,
L 4 = ρ 4 L 5 + τ 4 L 3 + ε 4 L 4 bb ,
L 5 = L s .
L 4 = τ 4 L 5 + ε 4 L 4 bb .
L 3 = ε 3 L 3 bb + τ 3 L 4 .
L 4 = ε 4 L 4 bb + ρ 4 L s + τ 4 ( ε 3 L 3 bb + τ 3 { ε 2 L 2 bb + L 1 τ 2 + ρ 2 [ ε 3 L 3 bb + τ 3 ( ε 4 L 4 bb + L s τ 4 ) ] } ) .
L = ε E L E bb + ρ E L S + τ E ( ε V L V bb + τ V { ε M L M bb + τ M L bg bb + ρ M [ ε V L V bb + τ V ( ε E L E bb + τ E L S ) ] } ) .
L bg bb = ( L ε E L E bb ρ E L S τ E ε V L V bb τ V τ E ε M L M bb ρ M τ V τ E ε V L V bb ρ M τ V 2 τ E ε E L E bb ρ M τ V 2 τ E 2 L S ) / ( τ M τ V τ E ) .
L bg bb = L ε V L V bb τ V ε M L M bb ρ M τ V ε V L V bb ρ M τ V 2 L S τ M τ V ,
L bg bb L ε E L E bb ρ E L S τ E ε V L V bb τ V τ E ,
L = ε E L E bb + ρ E L S + τ E ( ε V L V bb + τ V L bg bb ) .
L t 2 = L t 1 = τ E [ ( ε V 2 ε V 1 ) L V bb + ( τ V 2 τ V 1 ) L bg bb ] .
Δ L 0 = τ E ( L V bb L bg bb ) .
L bg bb = L V bb Δ L 0 τ E ,

Metrics