Abstract

A distributed-feedback (DFB) dye laser that is pumped by a standing Bessel-beam wave is constructed. Because of the long line focus of the Bessel beam, the laser medium is pumped in only a very thin filament (a few micrometers) along the optical axis. At the same time, longitudinal-mode selection is achieved because of the DFB effect. It is demonstrated that when the effective wavelength of the Bessel pump beam is varied, the Bragg wavelength for DFB is altered, and as a result the output wavelength can be tuned.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. P. Schäfer, Dye Lasers, F. Schäfer, ed. (Springer-Verlag, Berlin, 1990), Chap. 1, pp. 1–89.
  2. H. Kogelnik, C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
    [Crossref]
  3. C. V. Shank, J. E. Bjorkholm, H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
    [Crossref]
  4. Y. Cui, T. N. Ding, D. L. Hatten, W. T. Hill, J. Goldhar, “Frequency tuning of a distributed feedback dye laser with two transmission gratings,” Appl. Opt. 32, 6602–6606 (1993).
    [Crossref] [PubMed]
  5. J. Jasny, “Novel method for wavelength tuning of distributed feedback lasers,” Opt. Commun. 53, 238–242 (1985).
    [Crossref]
  6. Z. Bor, “Amplified spontaneous emission from N2-laser pumped dye lasers,” Opt. Commun. 39, 383–386 (1981).
    [Crossref]
  7. H. Kogelnik, C. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
    [Crossref]
  8. F. Kneubühl, M. Sigrist, Laser (B. G. Teubner, Stuttgart, Germany, 1989).
  9. J. Durnin, “Exact solutions for nondiffracting beams: I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
    [Crossref]
  10. J. Durnin, J. Miceli, J. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [Crossref] [PubMed]
  11. J. Turunen, A. Vasara, A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3961 (1988).
    [Crossref] [PubMed]
  12. G. Häusler, W. Heckel, “Light sectioning with large depth and high resolution,” Appl. Opt. 27, 5165–5169 (1988).
    [Crossref] [PubMed]
  13. M. Florjanczyk, R. Tremblay, “Guiding of atoms in a traveling-wave laser trap formed by the axicon,” Opt. Commun. 73, 448–450 (1989).
    [Crossref]
  14. T. Wulle, S. Herminghaus, “Nonlinear optics of Bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
    [Crossref] [PubMed]
  15. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954).
    [Crossref]
  16. G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6, 150–152 (1989).
    [Crossref]
  17. F. P. Schäfer, “On some properties of axicons,” Appl. Phys. B 39, 1–8 (1986).
    [Crossref]
  18. G. Kuhnle, G. Marowsky, G. A. Reider, “Laser amplification using axicon reflectors,” Appl. Opt. 27, 2666–2670 (1988).
    [Crossref] [PubMed]
  19. W. M. Wood, G. Focht, M. C. Downer, “Tight focusing and blue shifting of millijoule femtosecond pulses from a conical axicon amplifier,” Opt. Lett. 13, 984–986 (1988).
    [Crossref] [PubMed]
  20. K. B. Wolf, “Diffraction-free beams remain diffraction free under all paraxial transformations,” Phys. Rev. Lett. 60, 757–759 (1988).
    [Crossref] [PubMed]
  21. A. T. Friberg, A. Vasara, J. Turunen, “Partially coherent propagation-invariant beams: passage through paraxial optical systems,” Phys. Rev. A 43, 7079–7082 (1991).
    [Crossref] [PubMed]
  22. N. Harrison, B. Jennings, “Laser-induced Kerr constants for pure liquids,” J. Phys. Chem. Ref. Data 21, 157–163 (1992).
    [Crossref]
  23. F. Bos, “Optimization of spectral coverage in an eight-cell oscillator-amplifier dye laser pumped at 308 nm,” Appl. Opt. 20, 3553–3556 (1981).
    [Crossref] [PubMed]
  24. S. Gnepf, F. K. Kneubühl, “Theory on distributed feedback lasers with weak and strong modulations,” in Infrared and Millimeter Waves, J. K. Button, ed. (Academic, Orlando, Fla., 1986), Vol. 16, Chap. 2, pp. 35–76.

1993 (2)

1992 (1)

N. Harrison, B. Jennings, “Laser-induced Kerr constants for pure liquids,” J. Phys. Chem. Ref. Data 21, 157–163 (1992).
[Crossref]

1991 (1)

A. T. Friberg, A. Vasara, J. Turunen, “Partially coherent propagation-invariant beams: passage through paraxial optical systems,” Phys. Rev. A 43, 7079–7082 (1991).
[Crossref] [PubMed]

1989 (2)

M. Florjanczyk, R. Tremblay, “Guiding of atoms in a traveling-wave laser trap formed by the axicon,” Opt. Commun. 73, 448–450 (1989).
[Crossref]

G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6, 150–152 (1989).
[Crossref]

1988 (5)

1987 (2)

J. Durnin, “Exact solutions for nondiffracting beams: I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
[Crossref]

J. Durnin, J. Miceli, J. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref] [PubMed]

1986 (1)

F. P. Schäfer, “On some properties of axicons,” Appl. Phys. B 39, 1–8 (1986).
[Crossref]

1985 (1)

J. Jasny, “Novel method for wavelength tuning of distributed feedback lasers,” Opt. Commun. 53, 238–242 (1985).
[Crossref]

1981 (2)

1972 (1)

H. Kogelnik, C. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[Crossref]

1971 (2)

H. Kogelnik, C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
[Crossref]

C. V. Shank, J. E. Bjorkholm, H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[Crossref]

1954 (1)

Bjorkholm, J. E.

C. V. Shank, J. E. Bjorkholm, H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[Crossref]

Bor, Z.

Z. Bor, “Amplified spontaneous emission from N2-laser pumped dye lasers,” Opt. Commun. 39, 383–386 (1981).
[Crossref]

Bos, F.

Cui, Y.

Ding, T. N.

Downer, M. C.

Durnin, J.

J. Durnin, “Exact solutions for nondiffracting beams: I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
[Crossref]

J. Durnin, J. Miceli, J. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref] [PubMed]

Eberly, J.

J. Durnin, J. Miceli, J. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref] [PubMed]

Florjanczyk, M.

M. Florjanczyk, R. Tremblay, “Guiding of atoms in a traveling-wave laser trap formed by the axicon,” Opt. Commun. 73, 448–450 (1989).
[Crossref]

Focht, G.

Friberg, A. T.

A. T. Friberg, A. Vasara, J. Turunen, “Partially coherent propagation-invariant beams: passage through paraxial optical systems,” Phys. Rev. A 43, 7079–7082 (1991).
[Crossref] [PubMed]

J. Turunen, A. Vasara, A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3961 (1988).
[Crossref] [PubMed]

Gnepf, S.

S. Gnepf, F. K. Kneubühl, “Theory on distributed feedback lasers with weak and strong modulations,” in Infrared and Millimeter Waves, J. K. Button, ed. (Academic, Orlando, Fla., 1986), Vol. 16, Chap. 2, pp. 35–76.

Goldhar, J.

Harrison, N.

N. Harrison, B. Jennings, “Laser-induced Kerr constants for pure liquids,” J. Phys. Chem. Ref. Data 21, 157–163 (1992).
[Crossref]

Hatten, D. L.

Häusler, G.

Heckel, W.

Herminghaus, S.

T. Wulle, S. Herminghaus, “Nonlinear optics of Bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
[Crossref] [PubMed]

Hill, W. T.

Indebetouw, G.

Jasny, J.

J. Jasny, “Novel method for wavelength tuning of distributed feedback lasers,” Opt. Commun. 53, 238–242 (1985).
[Crossref]

Jennings, B.

N. Harrison, B. Jennings, “Laser-induced Kerr constants for pure liquids,” J. Phys. Chem. Ref. Data 21, 157–163 (1992).
[Crossref]

Kneubühl, F.

F. Kneubühl, M. Sigrist, Laser (B. G. Teubner, Stuttgart, Germany, 1989).

Kneubühl, F. K.

S. Gnepf, F. K. Kneubühl, “Theory on distributed feedback lasers with weak and strong modulations,” in Infrared and Millimeter Waves, J. K. Button, ed. (Academic, Orlando, Fla., 1986), Vol. 16, Chap. 2, pp. 35–76.

Kogelnik, H.

H. Kogelnik, C. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[Crossref]

C. V. Shank, J. E. Bjorkholm, H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[Crossref]

H. Kogelnik, C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
[Crossref]

Kuhnle, G.

Marowsky, G.

McLeod, J. H.

Miceli, J.

J. Durnin, J. Miceli, J. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref] [PubMed]

Reider, G. A.

Schäfer, F. P.

F. P. Schäfer, “On some properties of axicons,” Appl. Phys. B 39, 1–8 (1986).
[Crossref]

F. P. Schäfer, Dye Lasers, F. Schäfer, ed. (Springer-Verlag, Berlin, 1990), Chap. 1, pp. 1–89.

Shank, C.

H. Kogelnik, C. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[Crossref]

Shank, C. V.

H. Kogelnik, C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
[Crossref]

C. V. Shank, J. E. Bjorkholm, H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[Crossref]

Sigrist, M.

F. Kneubühl, M. Sigrist, Laser (B. G. Teubner, Stuttgart, Germany, 1989).

Tremblay, R.

M. Florjanczyk, R. Tremblay, “Guiding of atoms in a traveling-wave laser trap formed by the axicon,” Opt. Commun. 73, 448–450 (1989).
[Crossref]

Turunen, J.

A. T. Friberg, A. Vasara, J. Turunen, “Partially coherent propagation-invariant beams: passage through paraxial optical systems,” Phys. Rev. A 43, 7079–7082 (1991).
[Crossref] [PubMed]

J. Turunen, A. Vasara, A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3961 (1988).
[Crossref] [PubMed]

Vasara, A.

A. T. Friberg, A. Vasara, J. Turunen, “Partially coherent propagation-invariant beams: passage through paraxial optical systems,” Phys. Rev. A 43, 7079–7082 (1991).
[Crossref] [PubMed]

J. Turunen, A. Vasara, A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3961 (1988).
[Crossref] [PubMed]

Wolf, K. B.

K. B. Wolf, “Diffraction-free beams remain diffraction free under all paraxial transformations,” Phys. Rev. Lett. 60, 757–759 (1988).
[Crossref] [PubMed]

Wood, W. M.

Wulle, T.

T. Wulle, S. Herminghaus, “Nonlinear optics of Bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
[Crossref] [PubMed]

Appl. Opt. (5)

Appl. Phys. B (1)

F. P. Schäfer, “On some properties of axicons,” Appl. Phys. B 39, 1–8 (1986).
[Crossref]

Appl. Phys. Lett. (2)

H. Kogelnik, C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
[Crossref]

C. V. Shank, J. E. Bjorkholm, H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[Crossref]

J. Appl. Phys. (1)

H. Kogelnik, C. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Phys. Chem. Ref. Data (1)

N. Harrison, B. Jennings, “Laser-induced Kerr constants for pure liquids,” J. Phys. Chem. Ref. Data 21, 157–163 (1992).
[Crossref]

Opt. Commun. (3)

J. Jasny, “Novel method for wavelength tuning of distributed feedback lasers,” Opt. Commun. 53, 238–242 (1985).
[Crossref]

Z. Bor, “Amplified spontaneous emission from N2-laser pumped dye lasers,” Opt. Commun. 39, 383–386 (1981).
[Crossref]

M. Florjanczyk, R. Tremblay, “Guiding of atoms in a traveling-wave laser trap formed by the axicon,” Opt. Commun. 73, 448–450 (1989).
[Crossref]

Opt. Lett. (1)

Phys. Rev. A (1)

A. T. Friberg, A. Vasara, J. Turunen, “Partially coherent propagation-invariant beams: passage through paraxial optical systems,” Phys. Rev. A 43, 7079–7082 (1991).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

K. B. Wolf, “Diffraction-free beams remain diffraction free under all paraxial transformations,” Phys. Rev. Lett. 60, 757–759 (1988).
[Crossref] [PubMed]

T. Wulle, S. Herminghaus, “Nonlinear optics of Bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
[Crossref] [PubMed]

J. Durnin, J. Miceli, J. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref] [PubMed]

Other (3)

F. Kneubühl, M. Sigrist, Laser (B. G. Teubner, Stuttgart, Germany, 1989).

F. P. Schäfer, Dye Lasers, F. Schäfer, ed. (Springer-Verlag, Berlin, 1990), Chap. 1, pp. 1–89.

S. Gnepf, F. K. Kneubühl, “Theory on distributed feedback lasers with weak and strong modulations,” in Infrared and Millimeter Waves, J. K. Button, ed. (Academic, Orlando, Fla., 1986), Vol. 16, Chap. 2, pp. 35–76.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental setup: the expanded beam from a pulsed Nd:YAG laser is sent into an optical setup that allows us to vary the steepness γ of the Bessel beam. A standing Bessel wave is formed in the dye by reflection from the mirror at the rear side of the cuvette and leads to laser output. L1, L2, lenses; L, distance between the Axicon and L2; δ, axicon basis angle; f1, f2, focal lengths of lenses L1 and L2, respectively.

Fig. 2
Fig. 2

Results and gain curve: the solid curve represents the Bragg wavelength plotted against the angle γ L of the Bessel beam in the air. We also plotted the gain efficiency of the dye in the left-hand part of the figure (dotted–dashed curve). The horizontal dashed line gives the wavelength of maximum gain.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ = λ 0 2 cos ( γ ) ,
tan γ = L tan ( γ 0 ) ( 1 f 2 1 L ) ,

Metrics