Abstract

We describe a high-performance associative-memory system that can be implemented by means of an optical disk modified for parallel readout and a custom-designed silicon integrated circuit with parallel optical input. The system can achieve associative recall on 128 × 128 bit images and also on variable-size subimages. The system’s behavior and performance are evaluated on the basis of experimental results on a motionless-head parallel-readout optical-disk system, logic simulations of the very-large-scale integrated chip, and a software emulation of the overall system.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, T. Kuhonen, Self-Organization and Associative Memory (Springer-Verlag, New York, 1984).
  2. See, for example, Y. H. Pao, Adaptive Pattern Recognition and Neural Networks (Addison-Wesley, Reading, Mass., 1989), Chap. 6.
  3. T. Kohonen, “Correlation matrix memories,” IEEE Trans. Comput. C-21, 353–359 (1972).
    [CrossRef]
  4. J. A. Anderson, “A simple neural network generating an interactive memory,” Math. Biosci. 14, 197–220 (1972).
    [CrossRef]
  5. J. J. Hopfield, “Neural networks and physical systems with emergent collective computational properties,” Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982).
    [CrossRef] [PubMed]
  6. B. Kosko, “Bidirectional associative memories,” IEEE Trans. Syst. Man Cybern. 18, 49–60 (1988).
    [CrossRef]
  7. T. Ogura, J. Yamada, S. Yamada, M. Tan-no, “A 20-Kbit associative memory LSI for artificial intelligence machines,” IEEE J. Solid-State Circuits 24, 1014–1020 (1989).
    [CrossRef]
  8. H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
    [CrossRef]
  9. H. Bergh, J. Eneland, L. Lundstrom, “A fault tolerant associative memory with high speed operation,” IEEE J. Solid-State Circuits 25, 912–919 (1990).
    [CrossRef]
  10. L. Curran, “Wafer scale integration arrives in disk form,” Electron. Des.51–54 (1989).
  11. C. Mead, L. Conway, Introduction to VLSI Systems(Addison-Wesley, Reading, Mass., 1980), p. 317.
  12. R. Burger, W. Howard, eds., SIA Semiconductor Technology—Workshop Conclusions (Semiconductor Industry Association, San Jose, Calif.1993).
  13. S. Hunter, F. Kiamilev, S. C. Esener, D. A. Parthenopoulos, P. M. Rentzepis, “Potentials of two-photon based 3-D memories for high performance computing,” Appl. Opt. 29, 2058–2066 (1990).
    [CrossRef] [PubMed]
  14. D. Psaltis, M. Neifield, A. Yamamura, S. Kobayashi, “Optical memory disk in information processing,” Appl. Opt. 29, 2038–2057 (1990).
    [CrossRef] [PubMed]
  15. K. Kubota, Y. Ono, M. Kondo, S. Sugama, N. Nishida, M. Sakaguchi, “Holographic disk with high transfer rate: its application to an audio response memory,” Appl. Opt. 19, 944–951 (1980).
    [CrossRef] [PubMed]
  16. A. Mikaelian, E. Gulanian, Y. Vynokurov, A. Burgomistrov, B. Kretlov, K. Musatov, “Digital signal recording and readout system using one-dimensional hologram technology,” Int. J. Opt. Comput. 1, 93–100 (1990).
  17. J. H. Rilum, A. R. Tanguay, “Utilization of optical memory disks for optical information processing,” in OSA Annual Meeting, Vol. 11 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), paper MI5, p. 43.
  18. P. Marchand, A. V. Krishnamoorthy, P. Ambs, S. Esener, “Optoelectronic associative recall using motionless-head parallel readout optical disk,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1347, 86–97 (1990).
  19. P. Marchand, A. V. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Design of a motionless head for parallel readout optical disk,” in Optics for Computers: Architectures and Technologies, G. J. Lebreton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1505, 38–49 (1991).
  20. P. J. Marchand, A. V. Krishnamoorthy, K. S. Urquhart, P. Ambs, S. C. Esener, S. H. Lee, “Motionless-head parallel readout optical disk system,” Appl. Opt. 32, 190–203 (1993).
    [CrossRef] [PubMed]
  21. P. Marchand, A. Krishnamoorthy, G. Yayla, S. Esener, “Motionless-head parallel-readout optical disk for optoelectronic associative memories,” Rome Laboratories final contract rep. RL-TR-93-18 (University of California, San Diego, San Diego, Calif., November1992).
  22. D. J. Amit, Modelling Brain Function: The World of Attractor Neural Networks (Cambridge U. Press, London, 1989).
    [CrossRef]
  23. R. J. McEliece, E. C. Posner, E. R. Rodemich, S. Venkatesh, “The capacity of the Hopfield associative memory,” IEEE Trans. Inf. Theory IT-33, 461–482 (1987).
    [CrossRef]
  24. P. Kanerva, Sparse Distributed Memory (M.I.T. Press, Cambridge, Mass., 1988).
  25. J. D. Keeler, “Information capacity of outer-product neural networks,” Phys. Lett. A 124, 53–58 (1987).
    [CrossRef]
  26. R. P. Lippmann “An introduction to computing with neural nets,” IEEE ASSP Mag. 4(2), 4–22 (1987).
    [CrossRef]
  27. E. B. Baum, J. Moody, F. Wilczek, “Internal representations for associative memory,” Biol. Cybern. 59, 217–228 (1988).
    [CrossRef]
  28. P. A. Chou, “The capacity of the Kanerva associative memory,” IEEE Trans. Inf. Theory 35, 281–298 (1989).
    [CrossRef]
  29. J. Komlos, R. Paturi, “Convergence results in an associative memory,” Neural Networks 1, 239–250 (1988).
    [CrossRef]
  30. B. L. Montgomery, B. V. K. Vijaya Kumar, “Evaluation of the Hopfield neural network as a nearest neighbor algorithm,” Appl. Opt. 25, 3759–3766 (1986).
    [CrossRef] [PubMed]
  31. A. V. Krishnamoorthy, P. Marchand, G. Yayla, S. Esener, “Optoelectronic associative memory using a parallel readout optical disk,” in OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper MJ5, p. 13.
  32. A. V. Krishnamoorthy, “3-dimensional optoelectronic [N, M, F] networks for neurocomputing and parallel processing,” Ph.D. dissertation (University of California, San Diego, La Jolla, Calif., 1993).
  33. H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI (Addison-Wesley, Reading, Mass., 1990).
  34. MOS Implementation Service, “Scalable 2.0 and 1.2 Micron CMOS/Bulk Cell Family,” in CMOS Cell Notebook, Release 1.0A, (MOSIS, University of Southern California, Marina Del Ray, Calif., 1987).
  35. A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. Chirovsky, F. E. Kiamilev, G. F. Alpin, R. G. Rozier, D. A. Miller, “Implementation of a photonic page buffer based on GaAs MQW modulators bonded directly over active silicon VLSI circuits,” paper presented at the OSA Topical Meeting on Optical Computing, Salt Lake City, Utah, March 1995, paper PDP-2.
  36. G. Yayla, A. V. Krishnamoorthy, G. C. Marsden, S. C. Esener, “A prototype 3D optically interconnected neural network,” IEEE Proc. 82, 1749–1762 (1994).
    [CrossRef]
  37. G. C. Marsden, S. Esener, “Optoelectronic relational-database interface to parallel-access optical memories,” in OSA Annual Meeting, Vol. 16 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper FW4, pp. 254–255.
  38. P. B. Berra, A. Ghafoor, P. Mitkas, S. Marcinkowski, M. Guizani, “The impact of optics on data and knowledge base systems,” IEEE Trans. Knowl. Data Eng. 1, 111–131 (1989).
    [CrossRef]
  39. G. C. Marsden, A. Krishnamoorthy, S. Esener, S. H. Lee, “Dual-scale topology optoelectronic processor,” Opt. Lett. 16, 1970–1972 (1991).
    [CrossRef] [PubMed]
  40. A. Louri, J. Hatch, “Optical content-addressable parallel processor for high-speed database processing,” Appl. Opt. 33, 8153–8163 (1994).
    [CrossRef] [PubMed]

1994

G. Yayla, A. V. Krishnamoorthy, G. C. Marsden, S. C. Esener, “A prototype 3D optically interconnected neural network,” IEEE Proc. 82, 1749–1762 (1994).
[CrossRef]

A. Louri, J. Hatch, “Optical content-addressable parallel processor for high-speed database processing,” Appl. Opt. 33, 8153–8163 (1994).
[CrossRef] [PubMed]

1993

1991

1990

D. Psaltis, M. Neifield, A. Yamamura, S. Kobayashi, “Optical memory disk in information processing,” Appl. Opt. 29, 2038–2057 (1990).
[CrossRef] [PubMed]

S. Hunter, F. Kiamilev, S. C. Esener, D. A. Parthenopoulos, P. M. Rentzepis, “Potentials of two-photon based 3-D memories for high performance computing,” Appl. Opt. 29, 2058–2066 (1990).
[CrossRef] [PubMed]

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

H. Bergh, J. Eneland, L. Lundstrom, “A fault tolerant associative memory with high speed operation,” IEEE J. Solid-State Circuits 25, 912–919 (1990).
[CrossRef]

A. Mikaelian, E. Gulanian, Y. Vynokurov, A. Burgomistrov, B. Kretlov, K. Musatov, “Digital signal recording and readout system using one-dimensional hologram technology,” Int. J. Opt. Comput. 1, 93–100 (1990).

1989

L. Curran, “Wafer scale integration arrives in disk form,” Electron. Des.51–54 (1989).

T. Ogura, J. Yamada, S. Yamada, M. Tan-no, “A 20-Kbit associative memory LSI for artificial intelligence machines,” IEEE J. Solid-State Circuits 24, 1014–1020 (1989).
[CrossRef]

P. B. Berra, A. Ghafoor, P. Mitkas, S. Marcinkowski, M. Guizani, “The impact of optics on data and knowledge base systems,” IEEE Trans. Knowl. Data Eng. 1, 111–131 (1989).
[CrossRef]

P. A. Chou, “The capacity of the Kanerva associative memory,” IEEE Trans. Inf. Theory 35, 281–298 (1989).
[CrossRef]

1988

J. Komlos, R. Paturi, “Convergence results in an associative memory,” Neural Networks 1, 239–250 (1988).
[CrossRef]

E. B. Baum, J. Moody, F. Wilczek, “Internal representations for associative memory,” Biol. Cybern. 59, 217–228 (1988).
[CrossRef]

B. Kosko, “Bidirectional associative memories,” IEEE Trans. Syst. Man Cybern. 18, 49–60 (1988).
[CrossRef]

1987

R. J. McEliece, E. C. Posner, E. R. Rodemich, S. Venkatesh, “The capacity of the Hopfield associative memory,” IEEE Trans. Inf. Theory IT-33, 461–482 (1987).
[CrossRef]

J. D. Keeler, “Information capacity of outer-product neural networks,” Phys. Lett. A 124, 53–58 (1987).
[CrossRef]

R. P. Lippmann “An introduction to computing with neural nets,” IEEE ASSP Mag. 4(2), 4–22 (1987).
[CrossRef]

1986

1982

J. J. Hopfield, “Neural networks and physical systems with emergent collective computational properties,” Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982).
[CrossRef] [PubMed]

1980

1972

T. Kohonen, “Correlation matrix memories,” IEEE Trans. Comput. C-21, 353–359 (1972).
[CrossRef]

J. A. Anderson, “A simple neural network generating an interactive memory,” Math. Biosci. 14, 197–220 (1972).
[CrossRef]

Alpin, G. F.

A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. Chirovsky, F. E. Kiamilev, G. F. Alpin, R. G. Rozier, D. A. Miller, “Implementation of a photonic page buffer based on GaAs MQW modulators bonded directly over active silicon VLSI circuits,” paper presented at the OSA Topical Meeting on Optical Computing, Salt Lake City, Utah, March 1995, paper PDP-2.

Ambs, P.

P. J. Marchand, A. V. Krishnamoorthy, K. S. Urquhart, P. Ambs, S. C. Esener, S. H. Lee, “Motionless-head parallel readout optical disk system,” Appl. Opt. 32, 190–203 (1993).
[CrossRef] [PubMed]

P. Marchand, A. V. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Design of a motionless head for parallel readout optical disk,” in Optics for Computers: Architectures and Technologies, G. J. Lebreton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1505, 38–49 (1991).

P. Marchand, A. V. Krishnamoorthy, P. Ambs, S. Esener, “Optoelectronic associative recall using motionless-head parallel readout optical disk,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1347, 86–97 (1990).

Amit, D. J.

D. J. Amit, Modelling Brain Function: The World of Attractor Neural Networks (Cambridge U. Press, London, 1989).
[CrossRef]

Anderson, J. A.

J. A. Anderson, “A simple neural network generating an interactive memory,” Math. Biosci. 14, 197–220 (1972).
[CrossRef]

Asai, F.

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

Bakoglu, H. B.

H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI (Addison-Wesley, Reading, Mass., 1990).

Baum, E. B.

E. B. Baum, J. Moody, F. Wilczek, “Internal representations for associative memory,” Biol. Cybern. 59, 217–228 (1988).
[CrossRef]

Bergh, H.

H. Bergh, J. Eneland, L. Lundstrom, “A fault tolerant associative memory with high speed operation,” IEEE J. Solid-State Circuits 25, 912–919 (1990).
[CrossRef]

Berra, P. B.

P. B. Berra, A. Ghafoor, P. Mitkas, S. Marcinkowski, M. Guizani, “The impact of optics on data and knowledge base systems,” IEEE Trans. Knowl. Data Eng. 1, 111–131 (1989).
[CrossRef]

Burgomistrov, A.

A. Mikaelian, E. Gulanian, Y. Vynokurov, A. Burgomistrov, B. Kretlov, K. Musatov, “Digital signal recording and readout system using one-dimensional hologram technology,” Int. J. Opt. Comput. 1, 93–100 (1990).

Chirovsky, L. M.

A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. Chirovsky, F. E. Kiamilev, G. F. Alpin, R. G. Rozier, D. A. Miller, “Implementation of a photonic page buffer based on GaAs MQW modulators bonded directly over active silicon VLSI circuits,” paper presented at the OSA Topical Meeting on Optical Computing, Salt Lake City, Utah, March 1995, paper PDP-2.

Chou, P. A.

P. A. Chou, “The capacity of the Kanerva associative memory,” IEEE Trans. Inf. Theory 35, 281–298 (1989).
[CrossRef]

Conway, L.

C. Mead, L. Conway, Introduction to VLSI Systems(Addison-Wesley, Reading, Mass., 1980), p. 317.

Curran, L.

L. Curran, “Wafer scale integration arrives in disk form,” Electron. Des.51–54 (1989).

D’Asaro, L. A.

A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. Chirovsky, F. E. Kiamilev, G. F. Alpin, R. G. Rozier, D. A. Miller, “Implementation of a photonic page buffer based on GaAs MQW modulators bonded directly over active silicon VLSI circuits,” paper presented at the OSA Topical Meeting on Optical Computing, Salt Lake City, Utah, March 1995, paper PDP-2.

Dahringer, D.

A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. Chirovsky, F. E. Kiamilev, G. F. Alpin, R. G. Rozier, D. A. Miller, “Implementation of a photonic page buffer based on GaAs MQW modulators bonded directly over active silicon VLSI circuits,” paper presented at the OSA Topical Meeting on Optical Computing, Salt Lake City, Utah, March 1995, paper PDP-2.

Eneland, J.

H. Bergh, J. Eneland, L. Lundstrom, “A fault tolerant associative memory with high speed operation,” IEEE J. Solid-State Circuits 25, 912–919 (1990).
[CrossRef]

Esener, S.

G. C. Marsden, A. Krishnamoorthy, S. Esener, S. H. Lee, “Dual-scale topology optoelectronic processor,” Opt. Lett. 16, 1970–1972 (1991).
[CrossRef] [PubMed]

G. C. Marsden, S. Esener, “Optoelectronic relational-database interface to parallel-access optical memories,” in OSA Annual Meeting, Vol. 16 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper FW4, pp. 254–255.

P. Marchand, A. V. Krishnamoorthy, P. Ambs, S. Esener, “Optoelectronic associative recall using motionless-head parallel readout optical disk,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1347, 86–97 (1990).

A. V. Krishnamoorthy, P. Marchand, G. Yayla, S. Esener, “Optoelectronic associative memory using a parallel readout optical disk,” in OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper MJ5, p. 13.

P. Marchand, A. Krishnamoorthy, G. Yayla, S. Esener, “Motionless-head parallel-readout optical disk for optoelectronic associative memories,” Rome Laboratories final contract rep. RL-TR-93-18 (University of California, San Diego, San Diego, Calif., November1992).

P. Marchand, A. V. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Design of a motionless head for parallel readout optical disk,” in Optics for Computers: Architectures and Technologies, G. J. Lebreton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1505, 38–49 (1991).

Esener, S. C.

Ford, J. E.

A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. Chirovsky, F. E. Kiamilev, G. F. Alpin, R. G. Rozier, D. A. Miller, “Implementation of a photonic page buffer based on GaAs MQW modulators bonded directly over active silicon VLSI circuits,” paper presented at the OSA Topical Meeting on Optical Computing, Salt Lake City, Utah, March 1995, paper PDP-2.

Ghafoor, A.

P. B. Berra, A. Ghafoor, P. Mitkas, S. Marcinkowski, M. Guizani, “The impact of optics on data and knowledge base systems,” IEEE Trans. Knowl. Data Eng. 1, 111–131 (1989).
[CrossRef]

Goossen, K. W.

A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. Chirovsky, F. E. Kiamilev, G. F. Alpin, R. G. Rozier, D. A. Miller, “Implementation of a photonic page buffer based on GaAs MQW modulators bonded directly over active silicon VLSI circuits,” paper presented at the OSA Topical Meeting on Optical Computing, Salt Lake City, Utah, March 1995, paper PDP-2.

Gresser, J.

P. Marchand, A. V. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Design of a motionless head for parallel readout optical disk,” in Optics for Computers: Architectures and Technologies, G. J. Lebreton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1505, 38–49 (1991).

Guizani, M.

P. B. Berra, A. Ghafoor, P. Mitkas, S. Marcinkowski, M. Guizani, “The impact of optics on data and knowledge base systems,” IEEE Trans. Knowl. Data Eng. 1, 111–131 (1989).
[CrossRef]

Gulanian, E.

A. Mikaelian, E. Gulanian, Y. Vynokurov, A. Burgomistrov, B. Kretlov, K. Musatov, “Digital signal recording and readout system using one-dimensional hologram technology,” Int. J. Opt. Comput. 1, 93–100 (1990).

Hatch, J.

Hopfield, J. J.

J. J. Hopfield, “Neural networks and physical systems with emergent collective computational properties,” Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982).
[CrossRef] [PubMed]

Hui, S. P.

A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. Chirovsky, F. E. Kiamilev, G. F. Alpin, R. G. Rozier, D. A. Miller, “Implementation of a photonic page buffer based on GaAs MQW modulators bonded directly over active silicon VLSI circuits,” paper presented at the OSA Topical Meeting on Optical Computing, Salt Lake City, Utah, March 1995, paper PDP-2.

Hunter, S.

Kanerva, P.

P. Kanerva, Sparse Distributed Memory (M.I.T. Press, Cambridge, Mass., 1988).

Keeler, J. D.

J. D. Keeler, “Information capacity of outer-product neural networks,” Phys. Lett. A 124, 53–58 (1987).
[CrossRef]

Kiamilev, F.

Kiamilev, F. E.

A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. Chirovsky, F. E. Kiamilev, G. F. Alpin, R. G. Rozier, D. A. Miller, “Implementation of a photonic page buffer based on GaAs MQW modulators bonded directly over active silicon VLSI circuits,” paper presented at the OSA Topical Meeting on Optical Computing, Salt Lake City, Utah, March 1995, paper PDP-2.

Kobayashi, S.

Kohonen, T.

T. Kohonen, “Correlation matrix memories,” IEEE Trans. Comput. C-21, 353–359 (1972).
[CrossRef]

Komlos, J.

J. Komlos, R. Paturi, “Convergence results in an associative memory,” Neural Networks 1, 239–250 (1988).
[CrossRef]

Komori, S.

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

Kondo, M.

Kosko, B.

B. Kosko, “Bidirectional associative memories,” IEEE Trans. Syst. Man Cybern. 18, 49–60 (1988).
[CrossRef]

Kossives, D.

A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. Chirovsky, F. E. Kiamilev, G. F. Alpin, R. G. Rozier, D. A. Miller, “Implementation of a photonic page buffer based on GaAs MQW modulators bonded directly over active silicon VLSI circuits,” paper presented at the OSA Topical Meeting on Optical Computing, Salt Lake City, Utah, March 1995, paper PDP-2.

Kretlov, B.

A. Mikaelian, E. Gulanian, Y. Vynokurov, A. Burgomistrov, B. Kretlov, K. Musatov, “Digital signal recording and readout system using one-dimensional hologram technology,” Int. J. Opt. Comput. 1, 93–100 (1990).

Krishnamoorthy, A.

G. C. Marsden, A. Krishnamoorthy, S. Esener, S. H. Lee, “Dual-scale topology optoelectronic processor,” Opt. Lett. 16, 1970–1972 (1991).
[CrossRef] [PubMed]

P. Marchand, A. Krishnamoorthy, G. Yayla, S. Esener, “Motionless-head parallel-readout optical disk for optoelectronic associative memories,” Rome Laboratories final contract rep. RL-TR-93-18 (University of California, San Diego, San Diego, Calif., November1992).

Krishnamoorthy, A. V.

G. Yayla, A. V. Krishnamoorthy, G. C. Marsden, S. C. Esener, “A prototype 3D optically interconnected neural network,” IEEE Proc. 82, 1749–1762 (1994).
[CrossRef]

P. J. Marchand, A. V. Krishnamoorthy, K. S. Urquhart, P. Ambs, S. C. Esener, S. H. Lee, “Motionless-head parallel readout optical disk system,” Appl. Opt. 32, 190–203 (1993).
[CrossRef] [PubMed]

A. V. Krishnamoorthy, P. Marchand, G. Yayla, S. Esener, “Optoelectronic associative memory using a parallel readout optical disk,” in OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper MJ5, p. 13.

P. Marchand, A. V. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Design of a motionless head for parallel readout optical disk,” in Optics for Computers: Architectures and Technologies, G. J. Lebreton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1505, 38–49 (1991).

P. Marchand, A. V. Krishnamoorthy, P. Ambs, S. Esener, “Optoelectronic associative recall using motionless-head parallel readout optical disk,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1347, 86–97 (1990).

A. V. Krishnamoorthy, “3-dimensional optoelectronic [N, M, F] networks for neurocomputing and parallel processing,” Ph.D. dissertation (University of California, San Diego, La Jolla, Calif., 1993).

A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. Chirovsky, F. E. Kiamilev, G. F. Alpin, R. G. Rozier, D. A. Miller, “Implementation of a photonic page buffer based on GaAs MQW modulators bonded directly over active silicon VLSI circuits,” paper presented at the OSA Topical Meeting on Optical Computing, Salt Lake City, Utah, March 1995, paper PDP-2.

Kubota, K.

Lee, S. H.

P. J. Marchand, A. V. Krishnamoorthy, K. S. Urquhart, P. Ambs, S. C. Esener, S. H. Lee, “Motionless-head parallel readout optical disk system,” Appl. Opt. 32, 190–203 (1993).
[CrossRef] [PubMed]

G. C. Marsden, A. Krishnamoorthy, S. Esener, S. H. Lee, “Dual-scale topology optoelectronic processor,” Opt. Lett. 16, 1970–1972 (1991).
[CrossRef] [PubMed]

P. Marchand, A. V. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Design of a motionless head for parallel readout optical disk,” in Optics for Computers: Architectures and Technologies, G. J. Lebreton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1505, 38–49 (1991).

Leibenguth, R.

A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. Chirovsky, F. E. Kiamilev, G. F. Alpin, R. G. Rozier, D. A. Miller, “Implementation of a photonic page buffer based on GaAs MQW modulators bonded directly over active silicon VLSI circuits,” paper presented at the OSA Topical Meeting on Optical Computing, Salt Lake City, Utah, March 1995, paper PDP-2.

Lentine, A. L.

A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. Chirovsky, F. E. Kiamilev, G. F. Alpin, R. G. Rozier, D. A. Miller, “Implementation of a photonic page buffer based on GaAs MQW modulators bonded directly over active silicon VLSI circuits,” paper presented at the OSA Topical Meeting on Optical Computing, Salt Lake City, Utah, March 1995, paper PDP-2.

Lippmann, R. P.

R. P. Lippmann “An introduction to computing with neural nets,” IEEE ASSP Mag. 4(2), 4–22 (1987).
[CrossRef]

Louri, A.

Lundstrom, L.

H. Bergh, J. Eneland, L. Lundstrom, “A fault tolerant associative memory with high speed operation,” IEEE J. Solid-State Circuits 25, 912–919 (1990).
[CrossRef]

Marchand, P.

A. V. Krishnamoorthy, P. Marchand, G. Yayla, S. Esener, “Optoelectronic associative memory using a parallel readout optical disk,” in OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper MJ5, p. 13.

P. Marchand, A. Krishnamoorthy, G. Yayla, S. Esener, “Motionless-head parallel-readout optical disk for optoelectronic associative memories,” Rome Laboratories final contract rep. RL-TR-93-18 (University of California, San Diego, San Diego, Calif., November1992).

P. Marchand, A. V. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Design of a motionless head for parallel readout optical disk,” in Optics for Computers: Architectures and Technologies, G. J. Lebreton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1505, 38–49 (1991).

P. Marchand, A. V. Krishnamoorthy, P. Ambs, S. Esener, “Optoelectronic associative recall using motionless-head parallel readout optical disk,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1347, 86–97 (1990).

Marchand, P. J.

Marcinkowski, S.

P. B. Berra, A. Ghafoor, P. Mitkas, S. Marcinkowski, M. Guizani, “The impact of optics on data and knowledge base systems,” IEEE Trans. Knowl. Data Eng. 1, 111–131 (1989).
[CrossRef]

Marsden, G. C.

G. Yayla, A. V. Krishnamoorthy, G. C. Marsden, S. C. Esener, “A prototype 3D optically interconnected neural network,” IEEE Proc. 82, 1749–1762 (1994).
[CrossRef]

G. C. Marsden, A. Krishnamoorthy, S. Esener, S. H. Lee, “Dual-scale topology optoelectronic processor,” Opt. Lett. 16, 1970–1972 (1991).
[CrossRef] [PubMed]

G. C. Marsden, S. Esener, “Optoelectronic relational-database interface to parallel-access optical memories,” in OSA Annual Meeting, Vol. 16 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper FW4, pp. 254–255.

McEliece, R. J.

R. J. McEliece, E. C. Posner, E. R. Rodemich, S. Venkatesh, “The capacity of the Hopfield associative memory,” IEEE Trans. Inf. Theory IT-33, 461–482 (1987).
[CrossRef]

Mead, C.

C. Mead, L. Conway, Introduction to VLSI Systems(Addison-Wesley, Reading, Mass., 1980), p. 317.

Mikaelian, A.

A. Mikaelian, E. Gulanian, Y. Vynokurov, A. Burgomistrov, B. Kretlov, K. Musatov, “Digital signal recording and readout system using one-dimensional hologram technology,” Int. J. Opt. Comput. 1, 93–100 (1990).

Miller, D. A.

A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. Chirovsky, F. E. Kiamilev, G. F. Alpin, R. G. Rozier, D. A. Miller, “Implementation of a photonic page buffer based on GaAs MQW modulators bonded directly over active silicon VLSI circuits,” paper presented at the OSA Topical Meeting on Optical Computing, Salt Lake City, Utah, March 1995, paper PDP-2.

Mitkas, P.

P. B. Berra, A. Ghafoor, P. Mitkas, S. Marcinkowski, M. Guizani, “The impact of optics on data and knowledge base systems,” IEEE Trans. Knowl. Data Eng. 1, 111–131 (1989).
[CrossRef]

Montgomery, B. L.

Moody, J.

E. B. Baum, J. Moody, F. Wilczek, “Internal representations for associative memory,” Biol. Cybern. 59, 217–228 (1988).
[CrossRef]

Musatov, K.

A. Mikaelian, E. Gulanian, Y. Vynokurov, A. Burgomistrov, B. Kretlov, K. Musatov, “Digital signal recording and readout system using one-dimensional hologram technology,” Int. J. Opt. Comput. 1, 93–100 (1990).

Neifield, M.

Nishida, N.

Nishikawa, H.

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

Ogura, T.

T. Ogura, J. Yamada, S. Yamada, M. Tan-no, “A 20-Kbit associative memory LSI for artificial intelligence machines,” IEEE J. Solid-State Circuits 24, 1014–1020 (1989).
[CrossRef]

Ohno, T.

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

Ono, Y.

Pao, Y. H.

See, for example, Y. H. Pao, Adaptive Pattern Recognition and Neural Networks (Addison-Wesley, Reading, Mass., 1989), Chap. 6.

Parthenopoulos, D. A.

Paturi, R.

J. Komlos, R. Paturi, “Convergence results in an associative memory,” Neural Networks 1, 239–250 (1988).
[CrossRef]

Posner, E. C.

R. J. McEliece, E. C. Posner, E. R. Rodemich, S. Venkatesh, “The capacity of the Hopfield associative memory,” IEEE Trans. Inf. Theory IT-33, 461–482 (1987).
[CrossRef]

Psaltis, D.

Rentzepis, P. M.

Rilum, J. H.

J. H. Rilum, A. R. Tanguay, “Utilization of optical memory disks for optical information processing,” in OSA Annual Meeting, Vol. 11 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), paper MI5, p. 43.

Rodemich, E. R.

R. J. McEliece, E. C. Posner, E. R. Rodemich, S. Venkatesh, “The capacity of the Hopfield associative memory,” IEEE Trans. Inf. Theory IT-33, 461–482 (1987).
[CrossRef]

Rozier, R. G.

A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. Chirovsky, F. E. Kiamilev, G. F. Alpin, R. G. Rozier, D. A. Miller, “Implementation of a photonic page buffer based on GaAs MQW modulators bonded directly over active silicon VLSI circuits,” paper presented at the OSA Topical Meeting on Optical Computing, Salt Lake City, Utah, March 1995, paper PDP-2.

Sakaguchi, M.

Satoh, H.

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

Sugama, S.

Takata, H.

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

Tamura, T.

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

Tanguay, A. R.

J. H. Rilum, A. R. Tanguay, “Utilization of optical memory disks for optical information processing,” in OSA Annual Meeting, Vol. 11 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), paper MI5, p. 43.

Tan-no, M.

T. Ogura, J. Yamada, S. Yamada, M. Tan-no, “A 20-Kbit associative memory LSI for artificial intelligence machines,” IEEE J. Solid-State Circuits 24, 1014–1020 (1989).
[CrossRef]

Terada, H.

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

Tokuda, T.

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

Tseng, B.

A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. Chirovsky, F. E. Kiamilev, G. F. Alpin, R. G. Rozier, D. A. Miller, “Implementation of a photonic page buffer based on GaAs MQW modulators bonded directly over active silicon VLSI circuits,” paper presented at the OSA Topical Meeting on Optical Computing, Salt Lake City, Utah, March 1995, paper PDP-2.

Urquhart, K. S.

Venkatesh, S.

R. J. McEliece, E. C. Posner, E. R. Rodemich, S. Venkatesh, “The capacity of the Hopfield associative memory,” IEEE Trans. Inf. Theory IT-33, 461–482 (1987).
[CrossRef]

Vijaya Kumar, B. V. K.

Vynokurov, Y.

A. Mikaelian, E. Gulanian, Y. Vynokurov, A. Burgomistrov, B. Kretlov, K. Musatov, “Digital signal recording and readout system using one-dimensional hologram technology,” Int. J. Opt. Comput. 1, 93–100 (1990).

Walker, J. A.

A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. Chirovsky, F. E. Kiamilev, G. F. Alpin, R. G. Rozier, D. A. Miller, “Implementation of a photonic page buffer based on GaAs MQW modulators bonded directly over active silicon VLSI circuits,” paper presented at the OSA Topical Meeting on Optical Computing, Salt Lake City, Utah, March 1995, paper PDP-2.

Wilczek, F.

E. B. Baum, J. Moody, F. Wilczek, “Internal representations for associative memory,” Biol. Cybern. 59, 217–228 (1988).
[CrossRef]

Yamada, J.

T. Ogura, J. Yamada, S. Yamada, M. Tan-no, “A 20-Kbit associative memory LSI for artificial intelligence machines,” IEEE J. Solid-State Circuits 24, 1014–1020 (1989).
[CrossRef]

Yamada, S.

T. Ogura, J. Yamada, S. Yamada, M. Tan-no, “A 20-Kbit associative memory LSI for artificial intelligence machines,” IEEE J. Solid-State Circuits 24, 1014–1020 (1989).
[CrossRef]

Yamamura, A.

Yayla, G.

G. Yayla, A. V. Krishnamoorthy, G. C. Marsden, S. C. Esener, “A prototype 3D optically interconnected neural network,” IEEE Proc. 82, 1749–1762 (1994).
[CrossRef]

A. V. Krishnamoorthy, P. Marchand, G. Yayla, S. Esener, “Optoelectronic associative memory using a parallel readout optical disk,” in OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper MJ5, p. 13.

P. Marchand, A. Krishnamoorthy, G. Yayla, S. Esener, “Motionless-head parallel-readout optical disk for optoelectronic associative memories,” Rome Laboratories final contract rep. RL-TR-93-18 (University of California, San Diego, San Diego, Calif., November1992).

Appl. Opt.

Biol. Cybern.

E. B. Baum, J. Moody, F. Wilczek, “Internal representations for associative memory,” Biol. Cybern. 59, 217–228 (1988).
[CrossRef]

Electron. Des.

L. Curran, “Wafer scale integration arrives in disk form,” Electron. Des.51–54 (1989).

IEEE ASSP Mag.

R. P. Lippmann “An introduction to computing with neural nets,” IEEE ASSP Mag. 4(2), 4–22 (1987).
[CrossRef]

IEEE J. Solid-State Circuits

T. Ogura, J. Yamada, S. Yamada, M. Tan-no, “A 20-Kbit associative memory LSI for artificial intelligence machines,” IEEE J. Solid-State Circuits 24, 1014–1020 (1989).
[CrossRef]

H. Bergh, J. Eneland, L. Lundstrom, “A fault tolerant associative memory with high speed operation,” IEEE J. Solid-State Circuits 25, 912–919 (1990).
[CrossRef]

IEEE J. Solid-State Circuits

H. Takata, S. Komori, T. Tamura, F. Asai, H. Satoh, T. Ohno, T. Tokuda, H. Nishikawa, H. Terada, “A 100 mega-access per second matching memory for a data driven microprocessor,” IEEE J. Solid-State Circuits 25, 95–99 (1990).
[CrossRef]

IEEE Proc

G. Yayla, A. V. Krishnamoorthy, G. C. Marsden, S. C. Esener, “A prototype 3D optically interconnected neural network,” IEEE Proc. 82, 1749–1762 (1994).
[CrossRef]

IEEE Trans. Comput.

T. Kohonen, “Correlation matrix memories,” IEEE Trans. Comput. C-21, 353–359 (1972).
[CrossRef]

IEEE Trans. Inf. Theory

R. J. McEliece, E. C. Posner, E. R. Rodemich, S. Venkatesh, “The capacity of the Hopfield associative memory,” IEEE Trans. Inf. Theory IT-33, 461–482 (1987).
[CrossRef]

IEEE Trans. Inf. Theory

P. A. Chou, “The capacity of the Kanerva associative memory,” IEEE Trans. Inf. Theory 35, 281–298 (1989).
[CrossRef]

IEEE Trans. Knowl. Data Eng.

P. B. Berra, A. Ghafoor, P. Mitkas, S. Marcinkowski, M. Guizani, “The impact of optics on data and knowledge base systems,” IEEE Trans. Knowl. Data Eng. 1, 111–131 (1989).
[CrossRef]

IEEE Trans. Syst. Man Cybern.

B. Kosko, “Bidirectional associative memories,” IEEE Trans. Syst. Man Cybern. 18, 49–60 (1988).
[CrossRef]

Int. J. Opt. Comput.

A. Mikaelian, E. Gulanian, Y. Vynokurov, A. Burgomistrov, B. Kretlov, K. Musatov, “Digital signal recording and readout system using one-dimensional hologram technology,” Int. J. Opt. Comput. 1, 93–100 (1990).

Math. Biosci.

J. A. Anderson, “A simple neural network generating an interactive memory,” Math. Biosci. 14, 197–220 (1972).
[CrossRef]

Neural Networks

J. Komlos, R. Paturi, “Convergence results in an associative memory,” Neural Networks 1, 239–250 (1988).
[CrossRef]

Opt. Lett.

Phys. Lett. A

J. D. Keeler, “Information capacity of outer-product neural networks,” Phys. Lett. A 124, 53–58 (1987).
[CrossRef]

Proc. Natl. Acad. Sci. USA

J. J. Hopfield, “Neural networks and physical systems with emergent collective computational properties,” Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982).
[CrossRef] [PubMed]

Other

See, for example, T. Kuhonen, Self-Organization and Associative Memory (Springer-Verlag, New York, 1984).

See, for example, Y. H. Pao, Adaptive Pattern Recognition and Neural Networks (Addison-Wesley, Reading, Mass., 1989), Chap. 6.

P. Kanerva, Sparse Distributed Memory (M.I.T. Press, Cambridge, Mass., 1988).

C. Mead, L. Conway, Introduction to VLSI Systems(Addison-Wesley, Reading, Mass., 1980), p. 317.

R. Burger, W. Howard, eds., SIA Semiconductor Technology—Workshop Conclusions (Semiconductor Industry Association, San Jose, Calif.1993).

P. Marchand, A. Krishnamoorthy, G. Yayla, S. Esener, “Motionless-head parallel-readout optical disk for optoelectronic associative memories,” Rome Laboratories final contract rep. RL-TR-93-18 (University of California, San Diego, San Diego, Calif., November1992).

D. J. Amit, Modelling Brain Function: The World of Attractor Neural Networks (Cambridge U. Press, London, 1989).
[CrossRef]

A. V. Krishnamoorthy, P. Marchand, G. Yayla, S. Esener, “Optoelectronic associative memory using a parallel readout optical disk,” in OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper MJ5, p. 13.

A. V. Krishnamoorthy, “3-dimensional optoelectronic [N, M, F] networks for neurocomputing and parallel processing,” Ph.D. dissertation (University of California, San Diego, La Jolla, Calif., 1993).

H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI (Addison-Wesley, Reading, Mass., 1990).

MOS Implementation Service, “Scalable 2.0 and 1.2 Micron CMOS/Bulk Cell Family,” in CMOS Cell Notebook, Release 1.0A, (MOSIS, University of Southern California, Marina Del Ray, Calif., 1987).

A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. Chirovsky, F. E. Kiamilev, G. F. Alpin, R. G. Rozier, D. A. Miller, “Implementation of a photonic page buffer based on GaAs MQW modulators bonded directly over active silicon VLSI circuits,” paper presented at the OSA Topical Meeting on Optical Computing, Salt Lake City, Utah, March 1995, paper PDP-2.

J. H. Rilum, A. R. Tanguay, “Utilization of optical memory disks for optical information processing,” in OSA Annual Meeting, Vol. 11 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), paper MI5, p. 43.

P. Marchand, A. V. Krishnamoorthy, P. Ambs, S. Esener, “Optoelectronic associative recall using motionless-head parallel readout optical disk,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1347, 86–97 (1990).

P. Marchand, A. V. Krishnamoorthy, P. Ambs, J. Gresser, S. Esener, S. H. Lee, “Design of a motionless head for parallel readout optical disk,” in Optics for Computers: Architectures and Technologies, G. J. Lebreton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1505, 38–49 (1991).

G. C. Marsden, S. Esener, “Optoelectronic relational-database interface to parallel-access optical memories,” in OSA Annual Meeting, Vol. 16 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper FW4, pp. 254–255.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Data-encoding method for a motionless-head parallel-readout optical disk.

Fig. 2
Fig. 2

Disk-data layout: Data blocks of each image are radially shifted from each other.

Fig. 3
Fig. 3

Optical-disk readout system: After collimation by lens L1, the light is focused onto the disk by cylindrical lens L2. Cylindrical lens L3 performs the Fourier transform of the data along the radial direction, and cylindrical lens L4 images and magnifies the data along the tangential direction. A binary image is reconstructed at the output plane. Lenses L3 and L4 may be replaced by a single hybrid lens for lower aberrations.20

Fig. 4
Fig. 4

Results for the average contrast ratio: (a) Reconstruction of a 16 × 16 bit image. (b) Reconstruction of a 128 × 128 bit image. (c) Plot of the average contrast ratio of a 128 × 128 bit image reconstruction versus the number of gray levels used for encoding.

Fig. 5
Fig. 5

Schematic diagram of an outer-product-based architecture, where W ijkl = N 2 elements of a fourth-rank connection tensor.

Fig. 6
Fig. 6

Schematic diagram of a parallel inner-product-based architecture.

Fig. 7
Fig. 7

Schematic diagram of the page-serial, bit-parallel (PSBP) associative-memory architecture.

Fig. 8
Fig. 8

Illustration of the optoelectronic associative-memory-system design.

Fig. 9
Fig. 9

Flowchart for a best-match search with an associative-memory system.

Fig. 10
Fig. 10

H-tree-based OEIC architecture showing the layout geometry of a 16 × 16 unit-cell array of xnor cells. Fan-in units have a fixed height H in one dimension, which permits an area-efficient layout.

Fig. 11
Fig. 11

Diagram that illustrates the principles of a subfield search by means of a tree-based architecture: Thresholds are located in (a) level 3, and (b) level 2, as indicated by the large filled circles with cross-hatched centers.

Fig. 12
Fig. 12

Schematic diagrams showing the fan-in unit function: (a) OEIC architecture showing fan-in unit functionality for a chip with a 4 × 4 array of xnor cells, and (b) a tree-based comparator unit in which bits A i correspond to the input bits from the tree-based adder and bits TR i denote the decision threshold.

Fig. 13
Fig. 13

Photomicrograph of the CMOS chip containing test circuits of the detector–XNOR units, the fan-in units, and the tree-based comparator.

Fig. 14
Fig. 14

Output simulation results for an 8 × 8 pixel OEIC. The input and the query represent a full match. The detector rise time is not included.

Fig. 15
Fig. 15

Best- and worst-case delay scaling versus the level (l) of the tree for a 128 × 128 pixel OEIC.

Fig. 16
Fig. 16

Raw 16 × 16 pixel images from an optical disk that were captured with a CCD camera.

Fig. 17
Fig. 17

Raw images from Fig. 16 after digitization.

Fig. 18
Fig. 18

Associative-memory operation showing (a) the image query (RADC), (b) the output of the xnor gates for a matched memory (perfect match), and (c) the retrieved image (RADC).

Fig. 19
Fig. 19

Associative-memory operation showing (a) the image query (OIPG, with 20% noise added), (b) the output of the xnor gates for the matched memory (a 220-pixel match), and (c) the retrieved image (OIPG).

Fig. 20
Fig. 20

Subfield-search operation showing (a) the image query (an array of four letters D), (b) the output of the xnor gates, (c) the number and locations of matches (a perfect match was found for the lower-left corner of the image of RADC), and (d) the retrieved image.

Tables (5)

Tables Icon

Table 1 Critical Parameters for a Parallel-Access Optical Disk

Tables Icon

Table 2 Comparison of the Characteristics of Associative-Memory Architectures

Tables Icon

Table 3 Definitions of Variables

Tables Icon

Table 4 Standard Cell Specifications as Obtained from the MOSIS Servicea

Tables Icon

Table 5 Standard Cell Delay Times as Obtained from the MOSIS Servicea

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

β = the number of information bits in stored memories the total number of binary storage elements required .
β = M N N 2 log 2 ( 2 M + 1 ) M N log 2 M ,             ( N , M 1 ) ,
β = M N M N + M 2 log 2 ( M + 1 ) N N + M log 2 M ,             ( N , M 1 ) .
β = M N η M N + 2 N 1 η ,             ( N , M 1 ) ,
M 2 exp { N [ 1 - h ( D N ) ] + α log N } ,
Bus width = 6 λ [ log ( N 2 ) + 5 ] ,
L = 250 λ + [ 6 log N + 24 ] λ .
A leaf = [ A pd + A Rl + A latch + A inv + A XNOR ] f I ,
A leaf = 2 [ 26 , 000 λ 2 + A pd ] ,
l = A leaf .
t leaf = t pd + t inv + t XNOR ,
p d = p T H N 2 ,
t level l = t leaf + 2 t HA + t FA + ( l - 3 ) ( t FAS + t FAC ) ,             ( l 3 ) ,
t root = t comp + t level [ log N + 1 ] ,
t comp = t NOR [ 2 log ( log N ) + 1 ] ,
T 50 % = 0.4 [ R int C int ] l 2 + 0.7 [ R 0 C int + R 0 C L + R int C L ] l ,
t OEIC = t leaf + 2 t HA + t FAS + ( log 2 N - 2 ) ( t FAS + t FAC ) + t comp + l = 1 log N t int ( l ) ,
t best = t leaf + t HA + ( log 2 N - 1 ) ( t FAC ) + t comp + t int .

Metrics