Abstract

Fabrication of diffractive optics with binary masks requires multiple photolithographic processes to produce efficient, continuous profile elements (kinoforms). Alignment or etching errors at any stage of fabrication decrease the efficiency of the element. We developed two accessible procedures that minimize fabrication complexity, component turnaround time, and cost. The first technique [Appl. Opt. 34, 7507–7517 (1995)] uses gray-scale masks produced by commercial slide-imager systems. Here, we report on an alternative technique for producing gray-scale masks by spatial filtering of halftone screens. Using the photoreduced gray-scale patterns as lithographic masks, we fabricated diffractive-optic blazed gratings and lens arrays in both photoresist and quartz. First-order efficiencies as high as 70% are reported. Also, the strengths and limitations of this technique are compared with the previously reported slide-imager method as well as other fabrication methods.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Suleski, D. C. O’Shea, “Gray-scale masks for diffractive-optics fabrication. I. Commercial slide imagers,” Appl. Opt. (this issue).
  2. PostScript is a trademark of Adobe Systems, Inc., Mountain View, Calif.
  3. A. Nelson, L. Domash, “Low cost paths to binary optics,” NASA Conf. Publ. 3227 (NASA, Huntsville, Ala., 1993).
  4. D. O’Shea, J. Beletic, M. Poutous, “Binary-mask generation for diffractive optical elements using microcomputers,” Appl. Opt. 32, 2566–2572 (1993).
    [CrossRef]
  5. T. Suleski, D. O’Shea, “Fidelity of PostScript-generated masks for diffractive optics fabrication,” Appl. Opt. 34, 627–635 (1995).
    [CrossRef] [PubMed]
  6. C. Clark, Y. Demkov, “Making zones plates with a laser printer,” Am. J. Phys. 59, 158–162 (1991).
    [CrossRef]
  7. T. Yatagai, M. Geiser, R. Tian, H. Onda, “CAD system for CGH’s and laser beam lithography,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1555, 8–12 (1991).
  8. M. Geiser, “Software generates PostScript files of holograms,” Laser Focus World 26, 9 (1990).M. Geiser, “Software generates PostScript files of holograms,” Laser Focus World 26, 51–54 (1990).
  9. Y. Carts, “Desktop manufacturing creates binary optics,” Laser Focus World 29, 2 (1993).Y. Carts, “Desktop manufacturing creates binary optics,” Laser Focus World 29, 123 (1993).
  10. J. Blatt, H. Ho, “Rapid fabrication of coarse transmission gratings and targets by microcomputer and laser printer,” Appl. Opt. 26, 2691 (1987).
    [CrossRef] [PubMed]
  11. M. Ferstl, B. Kuhlow, E. Pawlowski, “Effect of fabrication errors on multilevel Fresnel zone lenses,” Opt. Eng. 33, 1229–1235 (1994).
    [CrossRef]
  12. H. Andersson, M. Ekberg, S. Hård, S. Jacobsson, M. Larsson, T. Nilsson, “Single photomask, multilevel kinoforms in quartz and photoresist: manufacture and evaluation,” Appl. Opt. 28, 4259–4266 (1990).
    [CrossRef]
  13. M. T. Gale, M. Rossi, H. Schutz, P. Ehbets, H. P. Herzig, D. Prongue, “Continuous-relief diffractive optical elements for two-dimensional array generation,” Appl. Opt. 32, 2526–2533 (1993).
    [CrossRef] [PubMed]
  14. M. W. Farn, J. W. Goodman, “Effect of VLSI fabrication errors on kinoform efficiency,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1211, 125–136 (1990).
  15. M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
    [CrossRef]
  16. Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
    [CrossRef]
  17. A. G. Poleshchuk, “Fabrication of relief-phase structures with continuous and multilevel profiles for diffractive optics,” Opto-electron. Instrum. Data Process. 1, 67–79 (1992).
  18. G. Lemelin, R. A. Lessard, “New coding technique to obtain multilevel computer generated holograms in one step,” Opt. Eng. 32, 2227–2232 (1993).
    [CrossRef]
  19. V. E. Shrauger, L. L. Erwin, J. L. Ahn, C. Warde, “Computer-generated multiple phase level holograms using color printer techniques,” Appl. Opt. 33, 5318–5327 (1994).
    [CrossRef] [PubMed]
  20. Mathematica is a trademark of Wolfram Research; Champaign, Ill.; Freehand is a trademark of the Macromedia Corporation, San Francisco, Calif.
  21. J. W. Goodman, “Spatial filtering and optical information processing,” in Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 141–197.
  22. Image Analyst is a trademark of Automatix, Inc., Billerica, Mass.
  23. Shipley Microposit S1400®Series Photoresist technical data sheet, Shipley, Newton, Mass.
  24. G. J. Swanson, “Binary optics technology: the theory and design of multilevel diffractive optical elements,” MIT Lincoln Laboratory Rep. 854 (MIT, Cambridge, Mass., 1989).
  25. G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
  26. T. Fujita, H. Nishihara, J. Koyama, “Blazed gratings and Fresnel lenses fabricated by electron-beam lithography,” Opt. Lett. 7, 578–580 (1982).
    [CrossRef] [PubMed]
  27. J. Rosen, B. Salik, A. Yariv, H.-K. Liu, “Pseudonondiffracting slitlike beam and its analogy to the pseudonondispersing pulse,” Opt. Lett. 20, 423–425 (1995).
    [CrossRef] [PubMed]

1995

1994

V. E. Shrauger, L. L. Erwin, J. L. Ahn, C. Warde, “Computer-generated multiple phase level holograms using color printer techniques,” Appl. Opt. 33, 5318–5327 (1994).
[CrossRef] [PubMed]

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

M. Ferstl, B. Kuhlow, E. Pawlowski, “Effect of fabrication errors on multilevel Fresnel zone lenses,” Opt. Eng. 33, 1229–1235 (1994).
[CrossRef]

1993

M. T. Gale, M. Rossi, H. Schutz, P. Ehbets, H. P. Herzig, D. Prongue, “Continuous-relief diffractive optical elements for two-dimensional array generation,” Appl. Opt. 32, 2526–2533 (1993).
[CrossRef] [PubMed]

Y. Carts, “Desktop manufacturing creates binary optics,” Laser Focus World 29, 2 (1993).Y. Carts, “Desktop manufacturing creates binary optics,” Laser Focus World 29, 123 (1993).

D. O’Shea, J. Beletic, M. Poutous, “Binary-mask generation for diffractive optical elements using microcomputers,” Appl. Opt. 32, 2566–2572 (1993).
[CrossRef]

G. Lemelin, R. A. Lessard, “New coding technique to obtain multilevel computer generated holograms in one step,” Opt. Eng. 32, 2227–2232 (1993).
[CrossRef]

1992

A. G. Poleshchuk, “Fabrication of relief-phase structures with continuous and multilevel profiles for diffractive optics,” Opto-electron. Instrum. Data Process. 1, 67–79 (1992).

1991

C. Clark, Y. Demkov, “Making zones plates with a laser printer,” Am. J. Phys. 59, 158–162 (1991).
[CrossRef]

M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

1990

H. Andersson, M. Ekberg, S. Hård, S. Jacobsson, M. Larsson, T. Nilsson, “Single photomask, multilevel kinoforms in quartz and photoresist: manufacture and evaluation,” Appl. Opt. 28, 4259–4266 (1990).
[CrossRef]

M. Geiser, “Software generates PostScript files of holograms,” Laser Focus World 26, 9 (1990).M. Geiser, “Software generates PostScript files of holograms,” Laser Focus World 26, 51–54 (1990).

1989

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).

1987

1982

Ahn, J. L.

Andersson, H.

H. Andersson, M. Ekberg, S. Hård, S. Jacobsson, M. Larsson, T. Nilsson, “Single photomask, multilevel kinoforms in quartz and photoresist: manufacture and evaluation,” Appl. Opt. 28, 4259–4266 (1990).
[CrossRef]

Beletic, J.

Blatt, J.

Carts, Y.

Y. Carts, “Desktop manufacturing creates binary optics,” Laser Focus World 29, 2 (1993).Y. Carts, “Desktop manufacturing creates binary optics,” Laser Focus World 29, 123 (1993).

Clark, C.

C. Clark, Y. Demkov, “Making zones plates with a laser printer,” Am. J. Phys. 59, 158–162 (1991).
[CrossRef]

Demkov, Y.

C. Clark, Y. Demkov, “Making zones plates with a laser printer,” Am. J. Phys. 59, 158–162 (1991).
[CrossRef]

Domash, L.

A. Nelson, L. Domash, “Low cost paths to binary optics,” NASA Conf. Publ. 3227 (NASA, Huntsville, Ala., 1993).

Ehbets, P.

Ekberg, M.

H. Andersson, M. Ekberg, S. Hård, S. Jacobsson, M. Larsson, T. Nilsson, “Single photomask, multilevel kinoforms in quartz and photoresist: manufacture and evaluation,” Appl. Opt. 28, 4259–4266 (1990).
[CrossRef]

Erwin, L. L.

Farn, M. W.

M. W. Farn, J. W. Goodman, “Effect of VLSI fabrication errors on kinoform efficiency,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1211, 125–136 (1990).

Ferstl, M.

M. Ferstl, B. Kuhlow, E. Pawlowski, “Effect of fabrication errors on multilevel Fresnel zone lenses,” Opt. Eng. 33, 1229–1235 (1994).
[CrossRef]

Fujita, T.

Gale, M. T.

Geiser, M.

M. Geiser, “Software generates PostScript files of holograms,” Laser Focus World 26, 9 (1990).M. Geiser, “Software generates PostScript files of holograms,” Laser Focus World 26, 51–54 (1990).

T. Yatagai, M. Geiser, R. Tian, H. Onda, “CAD system for CGH’s and laser beam lithography,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1555, 8–12 (1991).

Goodman, J. W.

M. W. Farn, J. W. Goodman, “Effect of VLSI fabrication errors on kinoform efficiency,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1211, 125–136 (1990).

J. W. Goodman, “Spatial filtering and optical information processing,” in Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 141–197.

Hård, S.

H. Andersson, M. Ekberg, S. Hård, S. Jacobsson, M. Larsson, T. Nilsson, “Single photomask, multilevel kinoforms in quartz and photoresist: manufacture and evaluation,” Appl. Opt. 28, 4259–4266 (1990).
[CrossRef]

Herzig, H. P.

Ho, H.

Holz, M.

M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

Jacobsson, S.

H. Andersson, M. Ekberg, S. Hård, S. Jacobsson, M. Larsson, T. Nilsson, “Single photomask, multilevel kinoforms in quartz and photoresist: manufacture and evaluation,” Appl. Opt. 28, 4259–4266 (1990).
[CrossRef]

Knowlden, R. E.

M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

Koyama, J.

Kuhlow, B.

M. Ferstl, B. Kuhlow, E. Pawlowski, “Effect of fabrication errors on multilevel Fresnel zone lenses,” Opt. Eng. 33, 1229–1235 (1994).
[CrossRef]

Larsson, M.

H. Andersson, M. Ekberg, S. Hård, S. Jacobsson, M. Larsson, T. Nilsson, “Single photomask, multilevel kinoforms in quartz and photoresist: manufacture and evaluation,” Appl. Opt. 28, 4259–4266 (1990).
[CrossRef]

Lemelin, G.

G. Lemelin, R. A. Lessard, “New coding technique to obtain multilevel computer generated holograms in one step,” Opt. Eng. 32, 2227–2232 (1993).
[CrossRef]

Lessard, R. A.

G. Lemelin, R. A. Lessard, “New coding technique to obtain multilevel computer generated holograms in one step,” Opt. Eng. 32, 2227–2232 (1993).
[CrossRef]

Liu, H.-K.

Mayor, J. M.

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Medeiros, S. S.

M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

Nelson, A.

A. Nelson, L. Domash, “Low cost paths to binary optics,” NASA Conf. Publ. 3227 (NASA, Huntsville, Ala., 1993).

Nilsson, T.

H. Andersson, M. Ekberg, S. Hård, S. Jacobsson, M. Larsson, T. Nilsson, “Single photomask, multilevel kinoforms in quartz and photoresist: manufacture and evaluation,” Appl. Opt. 28, 4259–4266 (1990).
[CrossRef]

Nishihara, H.

O’Shea, D.

O’Shea, D. C.

T. J. Suleski, D. C. O’Shea, “Gray-scale masks for diffractive-optics fabrication. I. Commercial slide imagers,” Appl. Opt. (this issue).

Onda, H.

T. Yatagai, M. Geiser, R. Tian, H. Onda, “CAD system for CGH’s and laser beam lithography,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1555, 8–12 (1991).

Oppliger, Y.

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Pawlowski, E.

M. Ferstl, B. Kuhlow, E. Pawlowski, “Effect of fabrication errors on multilevel Fresnel zone lenses,” Opt. Eng. 33, 1229–1235 (1994).
[CrossRef]

Poleshchuk, A. G.

A. G. Poleshchuk, “Fabrication of relief-phase structures with continuous and multilevel profiles for diffractive optics,” Opto-electron. Instrum. Data Process. 1, 67–79 (1992).

Poutous, M.

Prongue, D.

Regnault, P.

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Rosen, J.

Rossi, M.

Salik, B.

Schutz, H.

Shrauger, V. E.

Sixt, P.

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Stauffer, J. M.

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Stern, M. B.

M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

Suleski, T.

Suleski, T. J.

T. J. Suleski, D. C. O’Shea, “Gray-scale masks for diffractive-optics fabrication. I. Commercial slide imagers,” Appl. Opt. (this issue).

Swanson, G. J.

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).

G. J. Swanson, “Binary optics technology: the theory and design of multilevel diffractive optical elements,” MIT Lincoln Laboratory Rep. 854 (MIT, Cambridge, Mass., 1989).

Tian, R.

T. Yatagai, M. Geiser, R. Tian, H. Onda, “CAD system for CGH’s and laser beam lithography,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1555, 8–12 (1991).

Veldkamp, W. B.

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).

Voirin, G.

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Warde, C.

Yariv, A.

Yatagai, T.

T. Yatagai, M. Geiser, R. Tian, H. Onda, “CAD system for CGH’s and laser beam lithography,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1555, 8–12 (1991).

Am. J. Phys.

C. Clark, Y. Demkov, “Making zones plates with a laser printer,” Am. J. Phys. 59, 158–162 (1991).
[CrossRef]

Appl. Opt.

J. Vac. Sci. Technol. B

M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

Laser Focus World

M. Geiser, “Software generates PostScript files of holograms,” Laser Focus World 26, 9 (1990).M. Geiser, “Software generates PostScript files of holograms,” Laser Focus World 26, 51–54 (1990).

Y. Carts, “Desktop manufacturing creates binary optics,” Laser Focus World 29, 2 (1993).Y. Carts, “Desktop manufacturing creates binary optics,” Laser Focus World 29, 123 (1993).

Microelectron. Eng.

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Opt. Eng.

M. Ferstl, B. Kuhlow, E. Pawlowski, “Effect of fabrication errors on multilevel Fresnel zone lenses,” Opt. Eng. 33, 1229–1235 (1994).
[CrossRef]

Opt. Eng.

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).

G. Lemelin, R. A. Lessard, “New coding technique to obtain multilevel computer generated holograms in one step,” Opt. Eng. 32, 2227–2232 (1993).
[CrossRef]

Opt. Lett.

Opto-electron. Instrum. Data Process.

A. G. Poleshchuk, “Fabrication of relief-phase structures with continuous and multilevel profiles for diffractive optics,” Opto-electron. Instrum. Data Process. 1, 67–79 (1992).

Other

M. W. Farn, J. W. Goodman, “Effect of VLSI fabrication errors on kinoform efficiency,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1211, 125–136 (1990).

Mathematica is a trademark of Wolfram Research; Champaign, Ill.; Freehand is a trademark of the Macromedia Corporation, San Francisco, Calif.

J. W. Goodman, “Spatial filtering and optical information processing,” in Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 141–197.

Image Analyst is a trademark of Automatix, Inc., Billerica, Mass.

Shipley Microposit S1400®Series Photoresist technical data sheet, Shipley, Newton, Mass.

G. J. Swanson, “Binary optics technology: the theory and design of multilevel diffractive optical elements,” MIT Lincoln Laboratory Rep. 854 (MIT, Cambridge, Mass., 1989).

T. Yatagai, M. Geiser, R. Tian, H. Onda, “CAD system for CGH’s and laser beam lithography,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1555, 8–12 (1991).

PostScript is a trademark of Adobe Systems, Inc., Mountain View, Calif.

A. Nelson, L. Domash, “Low cost paths to binary optics,” NASA Conf. Publ. 3227 (NASA, Huntsville, Ala., 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Magnified (4×) section of a blazed-grating pattern that illustrates the simulated gray-scale method.

Fig. 2
Fig. 2

Schematics of the optical systems originally used to spatially filter the halftone pattern: (a) 4-f lens system and (b) unity-magnification mirror system. Each system requires a photoreduced halftone reticle placed in the object plane. The half-tones within the object generate the diffraction pattern in the Fourier plane of the optical system. A circular aperture (or pinhole) is placed in the Fourier plane to spatially filter the diffraction pattern.

Fig. 3
Fig. 3

Transmission profiles of a 200-μm-period blazed grating with the precision camera lens stopped down to (a) f/4, (b) f/11, and (c) f/16.

Fig. 4
Fig. 4

Transmission of areas in a gray-scale reticle as a function of the specified gray values in the original patterns.

Fig. 5
Fig. 5

Surface profiles of the 100-μm-period blazed grating (a) in photoresist with the Dektak profilometer (the vertical dimension is in angstroms) and (b) in quartz with the Alpha Step profilometer.

Fig. 6
Fig. 6

(a) Section of an 8-level kinoform lens array in photoresist. The change in contrast of the top portion is caused by the image processor and not by the photoresist material. (b) Surface profile of a section of the kinoform lens array in quartz. The central zone diameter is 930 μm.

Fig. 7
Fig. 7

Normalized intensity distribution in the focal plane of a kinoform lens in quartz.

Fig. 8
Fig. 8

Model of an imperfectly blazed grating used to define the quality factor Q.

Fig. 9
Fig. 9

Comparison of the quality factor Q of a 300-lpi pattern after a 10× reduction for a number of gratings with differing periods, at various stages of fabrication.

Fig. 10
Fig. 10

Comparison of the quality factor Q as a function of the spatial frequency for different gray-scale mask fabrication techniques.

Fig. 11
Fig. 11

Comparison of the first-order efficiency as a function of the grating period for different gray-scale mask fabrication techniques.

Tables (1)

Tables Icon

Table 1 Quality and Performance Evaluations for Blazed Gratings Fabricated in Quartz from a Single Spatially Filtered Gray-Scale Mask

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Q = 1 - x T ,

Metrics