Abstract

Reduced-scattering coefficients of neonatal skin were deduced in the 450–750-nm range from integrating-sphere measurements of the total reflection and total transmission of 22 skin samples. The reduced-scattering coefficients increased linearly at each wavelength with gestational maturity. The distribution of diameters d and concentration ρA of the skin-sample collagen fibers were measured in histological sections of nine neonatal skin samples of varying gestational ages. An algorithm that calculates Mie scattering by cylinders was used to model the scattering by the collagen fibers in the skin. The fraction of the reduced-scattering coefficient μs′ that was attributable to Mie scattering by collagen fibers, as deduced from wavelength-dependent analysis, increased with gestational age and approached that found for adult skin. An assignment of 1.017 for n rel, the refractive index of the collagen fibers relative to that of the surrounding medium, allowed the values for Mie scattering by collagen fibers, as predicted by the model for each of the nine neonatal skin samples to match the values for Mie scattering by collagen fibers as expected from the measurements of μs′. The Mie-scattering model predicted an increase in scattering with gestational age on the basis of changes in the collagen-fiber diameters, and this increase was proportional to that measured with the integrating-sphere method.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. F. Cheong, S. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  2. B. C. Wilson, M. S. Patterson, S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46, 601–608 (1987).
    [CrossRef] [PubMed]
  3. O. T. Tan, B. A. Gilchrest, “Laser therapy for selected cutaneous vascular lesions in the pediatric population: a review,” Pediatrics 82, 652–662 (1988).
    [PubMed]
  4. S. M. Dinehart, M. Waner, S. Flock, “The copper vapor laser for treatment of cutaneous vascular and pigmented lesions,” J. Dermatol. Surg. Oncol. 19, 370–375 (1993).
    [PubMed]
  5. Y. Yamauchi, I. Yamanouchi, “Transcutaneous bilirubinom etry: serum bilirubin measurement using transcutaneous bilirubinometer (TcB). A preliminary study,” Biol. Neonate 56, 257–262 (1989).
    [CrossRef] [PubMed]
  6. I. S. Saidi, S. L. Jacques, F. K. Tittel, “Preliminary clinical results of a transcutaneous reflectance spectrophotometer for the detection of bilirubin in neonates,” in Conference on Lasers and Electo-Optics, Vol. 12 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CTuS3, pp. 150–151.
  7. R. R. Anderson, J. A. Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. F. Regan, J. A. Parrish, eds. (Plenum, New York, 1982), pp. 147–194.
    [CrossRef]
  8. S. L. Thomsen, S. L. Jacques, S. T. Flock, “Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. Soc. Photo. Opt. Instrum. Eng. 1202, 2–10 (1990).
  9. S. Bosman, “Heat-induced structural alterations in myocardium in relation to changing optical properties,” Appl. Opt. 32, 461–463 (1993).
    [CrossRef] [PubMed]
  10. R. R. Anderson, J. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
    [CrossRef] [PubMed]
  11. M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
    [CrossRef] [PubMed]
  12. S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of He–Ne laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).
  13. L. T. Smith, K. H. Holbrook, “Development of dermal connective tissue in human embryonic and fetal skin,” Scanning Electron Microsc. 4, 1745–1751 (1982).
  14. L. T. Smith, K. A. Holbrook, J. A. Madri, “Collagen types I, III, and V in human embryonic and fetal skin,” Am. J. Anat. 175, 507–521 (1986).
    [CrossRef] [PubMed]
  15. S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding–doubling method,” Appl. Opt. 32, 559–568 (1993).
    [CrossRef] [PubMed]
  16. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  17. R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculation,” Appl. Opt. 31, 1370–1376 (1992).
    [CrossRef] [PubMed]
  18. F. P. Bolin, L. E. Preuss, R. C. Taylor, R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989).
    [CrossRef] [PubMed]
  19. S. Takatani, M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26, 656–664 (1979).
    [CrossRef] [PubMed]
  20. S. Lees, N. J. Tao, S. M. Lindsay, “Studies of compact hard tissues and collagen by means of Brillouin light scattering,” Connective Tissue Res. 24, 187–205 (1990).
    [CrossRef]
  21. R. A. Stepnoski, A. LaPorta, F. Racuia-Bahling, G. E. Blonder, R. E. Slusher, D. Dleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382–9386 (1991).
    [CrossRef] [PubMed]
  22. A. C. Lind, J. M. Greenberg, “Electromagnetic scattering by obliquely oriented cylinders,” J. Appl. Phys. 37, 3195–3203 (1966).
    [CrossRef]

1993 (3)

1992 (1)

1991 (1)

R. A. Stepnoski, A. LaPorta, F. Racuia-Bahling, G. E. Blonder, R. E. Slusher, D. Dleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382–9386 (1991).
[CrossRef] [PubMed]

1990 (2)

S. Lees, N. J. Tao, S. M. Lindsay, “Studies of compact hard tissues and collagen by means of Brillouin light scattering,” Connective Tissue Res. 24, 187–205 (1990).
[CrossRef]

W. F. Cheong, S. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1989 (3)

Y. Yamauchi, I. Yamanouchi, “Transcutaneous bilirubinom etry: serum bilirubin measurement using transcutaneous bilirubinometer (TcB). A preliminary study,” Biol. Neonate 56, 257–262 (1989).
[CrossRef] [PubMed]

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

F. P. Bolin, L. E. Preuss, R. C. Taylor, R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989).
[CrossRef] [PubMed]

1988 (1)

O. T. Tan, B. A. Gilchrest, “Laser therapy for selected cutaneous vascular lesions in the pediatric population: a review,” Pediatrics 82, 652–662 (1988).
[PubMed]

1987 (2)

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of He–Ne laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

B. C. Wilson, M. S. Patterson, S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46, 601–608 (1987).
[CrossRef] [PubMed]

1986 (1)

L. T. Smith, K. A. Holbrook, J. A. Madri, “Collagen types I, III, and V in human embryonic and fetal skin,” Am. J. Anat. 175, 507–521 (1986).
[CrossRef] [PubMed]

1982 (1)

L. T. Smith, K. H. Holbrook, “Development of dermal connective tissue in human embryonic and fetal skin,” Scanning Electron Microsc. 4, 1745–1751 (1982).

1981 (1)

R. R. Anderson, J. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[CrossRef] [PubMed]

1979 (1)

S. Takatani, M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26, 656–664 (1979).
[CrossRef] [PubMed]

1966 (1)

A. C. Lind, J. M. Greenberg, “Electromagnetic scattering by obliquely oriented cylinders,” J. Appl. Phys. 37, 3195–3203 (1966).
[CrossRef]

Aarnoudse, J. G.

Alter, C. A.

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of He–Ne laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

Anderson, R. R.

R. R. Anderson, J. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[CrossRef] [PubMed]

R. R. Anderson, J. A. Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. F. Regan, J. A. Parrish, eds. (Plenum, New York, 1982), pp. 147–194.
[CrossRef]

Blonder, G. E.

R. A. Stepnoski, A. LaPorta, F. Racuia-Bahling, G. E. Blonder, R. E. Slusher, D. Dleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382–9386 (1991).
[CrossRef] [PubMed]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Bolin, F. P.

Bosman, S.

Cheong, W. F.

W. F. Cheong, S. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

de Mul, F. F. M.

Dinehart, S. M.

S. M. Dinehart, M. Waner, S. Flock, “The copper vapor laser for treatment of cutaneous vascular and pigmented lesions,” J. Dermatol. Surg. Oncol. 19, 370–375 (1993).
[PubMed]

Dleinfeld, D.

R. A. Stepnoski, A. LaPorta, F. Racuia-Bahling, G. E. Blonder, R. E. Slusher, D. Dleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382–9386 (1991).
[CrossRef] [PubMed]

Ference, R. J.

Flock, S.

S. M. Dinehart, M. Waner, S. Flock, “The copper vapor laser for treatment of cutaneous vascular and pigmented lesions,” J. Dermatol. Surg. Oncol. 19, 370–375 (1993).
[PubMed]

Flock, S. T.

B. C. Wilson, M. S. Patterson, S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46, 601–608 (1987).
[CrossRef] [PubMed]

S. L. Thomsen, S. L. Jacques, S. T. Flock, “Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. Soc. Photo. Opt. Instrum. Eng. 1202, 2–10 (1990).

Gilchrest, B. A.

O. T. Tan, B. A. Gilchrest, “Laser therapy for selected cutaneous vascular lesions in the pediatric population: a review,” Pediatrics 82, 652–662 (1988).
[PubMed]

Graaff, R.

Graham, M. D.

S. Takatani, M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26, 656–664 (1979).
[CrossRef] [PubMed]

Greenberg, J. M.

A. C. Lind, J. M. Greenberg, “Electromagnetic scattering by obliquely oriented cylinders,” J. Appl. Phys. 37, 3195–3203 (1966).
[CrossRef]

Greve, J.

Holbrook, K. A.

L. T. Smith, K. A. Holbrook, J. A. Madri, “Collagen types I, III, and V in human embryonic and fetal skin,” Am. J. Anat. 175, 507–521 (1986).
[CrossRef] [PubMed]

Holbrook, K. H.

L. T. Smith, K. H. Holbrook, “Development of dermal connective tissue in human embryonic and fetal skin,” Scanning Electron Microsc. 4, 1745–1751 (1982).

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Jacques, S. L.

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of He–Ne laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

S. L. Thomsen, S. L. Jacques, S. T. Flock, “Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. Soc. Photo. Opt. Instrum. Eng. 1202, 2–10 (1990).

I. S. Saidi, S. L. Jacques, F. K. Tittel, “Preliminary clinical results of a transcutaneous reflectance spectrophotometer for the detection of bilirubin in neonates,” in Conference on Lasers and Electo-Optics, Vol. 12 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CTuS3, pp. 150–151.

Koelink, M. H.

LaPorta, A.

R. A. Stepnoski, A. LaPorta, F. Racuia-Bahling, G. E. Blonder, R. E. Slusher, D. Dleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382–9386 (1991).
[CrossRef] [PubMed]

Lees, S.

S. Lees, N. J. Tao, S. M. Lindsay, “Studies of compact hard tissues and collagen by means of Brillouin light scattering,” Connective Tissue Res. 24, 187–205 (1990).
[CrossRef]

Lind, A. C.

A. C. Lind, J. M. Greenberg, “Electromagnetic scattering by obliquely oriented cylinders,” J. Appl. Phys. 37, 3195–3203 (1966).
[CrossRef]

Lindsay, S. M.

S. Lees, N. J. Tao, S. M. Lindsay, “Studies of compact hard tissues and collagen by means of Brillouin light scattering,” Connective Tissue Res. 24, 187–205 (1990).
[CrossRef]

Madri, J. A.

L. T. Smith, K. A. Holbrook, J. A. Madri, “Collagen types I, III, and V in human embryonic and fetal skin,” Am. J. Anat. 175, 507–521 (1986).
[CrossRef] [PubMed]

Parrish, J.

R. R. Anderson, J. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[CrossRef] [PubMed]

Parrish, J. A.

R. R. Anderson, J. A. Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. F. Regan, J. A. Parrish, eds. (Plenum, New York, 1982), pp. 147–194.
[CrossRef]

Patterson, M. S.

B. C. Wilson, M. S. Patterson, S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46, 601–608 (1987).
[CrossRef] [PubMed]

Prahl, S.

W. F. Cheong, S. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Prahl, S. A.

S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding–doubling method,” Appl. Opt. 32, 559–568 (1993).
[CrossRef] [PubMed]

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of He–Ne laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

Preuss, L. E.

Racuia-Bahling, F.

R. A. Stepnoski, A. LaPorta, F. Racuia-Bahling, G. E. Blonder, R. E. Slusher, D. Dleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382–9386 (1991).
[CrossRef] [PubMed]

Saidi, I. S.

I. S. Saidi, S. L. Jacques, F. K. Tittel, “Preliminary clinical results of a transcutaneous reflectance spectrophotometer for the detection of bilirubin in neonates,” in Conference on Lasers and Electo-Optics, Vol. 12 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CTuS3, pp. 150–151.

Sloot, P. M. A.

Slusher, R. E.

R. A. Stepnoski, A. LaPorta, F. Racuia-Bahling, G. E. Blonder, R. E. Slusher, D. Dleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382–9386 (1991).
[CrossRef] [PubMed]

Smith, L. T.

L. T. Smith, K. A. Holbrook, J. A. Madri, “Collagen types I, III, and V in human embryonic and fetal skin,” Am. J. Anat. 175, 507–521 (1986).
[CrossRef] [PubMed]

L. T. Smith, K. H. Holbrook, “Development of dermal connective tissue in human embryonic and fetal skin,” Scanning Electron Microsc. 4, 1745–1751 (1982).

Star, W. M.

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

Stepnoski, R. A.

R. A. Stepnoski, A. LaPorta, F. Racuia-Bahling, G. E. Blonder, R. E. Slusher, D. Dleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382–9386 (1991).
[CrossRef] [PubMed]

Sterenborg, H. J. C. M.

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

Takatani, S.

S. Takatani, M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26, 656–664 (1979).
[CrossRef] [PubMed]

Tan, O. T.

O. T. Tan, B. A. Gilchrest, “Laser therapy for selected cutaneous vascular lesions in the pediatric population: a review,” Pediatrics 82, 652–662 (1988).
[PubMed]

Tao, N. J.

S. Lees, N. J. Tao, S. M. Lindsay, “Studies of compact hard tissues and collagen by means of Brillouin light scattering,” Connective Tissue Res. 24, 187–205 (1990).
[CrossRef]

Taylor, R. C.

Thomsen, S. L.

S. L. Thomsen, S. L. Jacques, S. T. Flock, “Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. Soc. Photo. Opt. Instrum. Eng. 1202, 2–10 (1990).

Tittel, F. K.

I. S. Saidi, S. L. Jacques, F. K. Tittel, “Preliminary clinical results of a transcutaneous reflectance spectrophotometer for the detection of bilirubin in neonates,” in Conference on Lasers and Electo-Optics, Vol. 12 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CTuS3, pp. 150–151.

van Gemert, M. J. C.

Waner, M.

S. M. Dinehart, M. Waner, S. Flock, “The copper vapor laser for treatment of cutaneous vascular and pigmented lesions,” J. Dermatol. Surg. Oncol. 19, 370–375 (1993).
[PubMed]

Welch, A. J.

S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding–doubling method,” Appl. Opt. 32, 559–568 (1993).
[CrossRef] [PubMed]

W. F. Cheong, S. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Wilson, B. C.

B. C. Wilson, M. S. Patterson, S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46, 601–608 (1987).
[CrossRef] [PubMed]

Yamanouchi, I.

Y. Yamauchi, I. Yamanouchi, “Transcutaneous bilirubinom etry: serum bilirubin measurement using transcutaneous bilirubinometer (TcB). A preliminary study,” Biol. Neonate 56, 257–262 (1989).
[CrossRef] [PubMed]

Yamauchi, Y.

Y. Yamauchi, I. Yamanouchi, “Transcutaneous bilirubinom etry: serum bilirubin measurement using transcutaneous bilirubinometer (TcB). A preliminary study,” Biol. Neonate 56, 257–262 (1989).
[CrossRef] [PubMed]

Zijp, J. R.

Am. J. Anat. (1)

L. T. Smith, K. A. Holbrook, J. A. Madri, “Collagen types I, III, and V in human embryonic and fetal skin,” Am. J. Anat. 175, 507–521 (1986).
[CrossRef] [PubMed]

Appl. Opt. (4)

Biol. Neonate (1)

Y. Yamauchi, I. Yamanouchi, “Transcutaneous bilirubinom etry: serum bilirubin measurement using transcutaneous bilirubinometer (TcB). A preliminary study,” Biol. Neonate 56, 257–262 (1989).
[CrossRef] [PubMed]

Connective Tissue Res. (1)

S. Lees, N. J. Tao, S. M. Lindsay, “Studies of compact hard tissues and collagen by means of Brillouin light scattering,” Connective Tissue Res. 24, 187–205 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

IEEE Trans. Biomed. Eng. (2)

S. Takatani, M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26, 656–664 (1979).
[CrossRef] [PubMed]

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

A. C. Lind, J. M. Greenberg, “Electromagnetic scattering by obliquely oriented cylinders,” J. Appl. Phys. 37, 3195–3203 (1966).
[CrossRef]

J. Dermatol. Surg. Oncol. (1)

S. M. Dinehart, M. Waner, S. Flock, “The copper vapor laser for treatment of cutaneous vascular and pigmented lesions,” J. Dermatol. Surg. Oncol. 19, 370–375 (1993).
[PubMed]

J. Invest. Dermatol. (1)

R. R. Anderson, J. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[CrossRef] [PubMed]

Lasers Life Sci. (1)

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of He–Ne laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

Pediatrics (1)

O. T. Tan, B. A. Gilchrest, “Laser therapy for selected cutaneous vascular lesions in the pediatric population: a review,” Pediatrics 82, 652–662 (1988).
[PubMed]

Photochem. Photobiol. (1)

B. C. Wilson, M. S. Patterson, S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46, 601–608 (1987).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

R. A. Stepnoski, A. LaPorta, F. Racuia-Bahling, G. E. Blonder, R. E. Slusher, D. Dleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382–9386 (1991).
[CrossRef] [PubMed]

Scanning Electron Microsc. (1)

L. T. Smith, K. H. Holbrook, “Development of dermal connective tissue in human embryonic and fetal skin,” Scanning Electron Microsc. 4, 1745–1751 (1982).

Other (4)

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

I. S. Saidi, S. L. Jacques, F. K. Tittel, “Preliminary clinical results of a transcutaneous reflectance spectrophotometer for the detection of bilirubin in neonates,” in Conference on Lasers and Electo-Optics, Vol. 12 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CTuS3, pp. 150–151.

R. R. Anderson, J. A. Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. F. Regan, J. A. Parrish, eds. (Plenum, New York, 1982), pp. 147–194.
[CrossRef]

S. L. Thomsen, S. L. Jacques, S. T. Flock, “Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. Soc. Photo. Opt. Instrum. Eng. 1202, 2–10 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of a neonatal-skin histological section showing the collagen fibers parallel to the skin surface. The thickness of the histological section is 5 μm. Virtual lines (a) were projected onto the image analyzer in the y direction, and the number and diameters of fibers crossing these lines were measured. The fibers are assumed to be infinitely long.

Fig. 2
Fig. 2

Example distribution of collagen-fiber diameters measured histologically. The graph shows the actual distribution of collagen-fiber diameters (shaded columns) measured in sample II (gestational maturity = 21 weeks) and the Gaussian distribution (curve) for the measured mean diameter and standard deviation. The Gaussian distributions, similar to this one, were used in the cylindrical Mie-theory model of scattering for each neonatal-skin sample.

Fig. 3
Fig. 3

Reduced-scattering coefficient μ s ′ at 650 nm of neonatal skin measured by means of an integrating sphere as a function of gestational maturity. The line represents the best fit through the available data points (square). Similar plots were constructed for the data at other wavelengths (between 450 and 750 nm) at 50-nm intervals.

Fig. 4
Fig. 4

Reduced-scattering cross-section σ s ′ spectra as predicted by the Mie-scattering theory for (a) cylinders of various diameters with the index of refraction of the collagen fibers relative to the surrounding media n rel held constant at 1.022, and (b) for a cylinder of constant diameter (2.0 μm) as n rel is varied. In (a) it can be seen that Mie theory predicts that doubling the cylinder diameter more than doubles the scattering cross section. In (b), changes in n rel can strongly alter the Mie theory predictions of the amount of scattering by cylinders.

Fig. 5
Fig. 5

Mie- and Rayleigh-scattering versus gestational maturity: (a) Parameters A and B used to model the contributions of Mie and Rayleigh scattering, respectively. It can be seen that the Mie parameter A increases at a faster rate with gestational age than does the Rayleigh parameter B. (b) Fraction of total reduced scattering attributed to Mie scattering by collagen fibers as measured at two wavelengths, 500 and 650 nm. This fraction was calculated with Eq. (16) and the data for parameters A and B that were presented in Fig. 4(a).

Fig. 6
Fig. 6

Modeled reduced-scattering coefficient of skin as a function of wavelength for a typical 36-week gestational maturity neonate. The thin solid curve shows the Mie scattering by collagen fibers only, as predicted by the cylindrical Mie-scattering model. The dashed curve shows the Rayleigh scattering only in the model. The thick curve represents the combined modeled Rayleigh and Mie scattering. The scattering coefficients measured in the visible region are also displayed (circles). The predicted scattering is extended into the infrared region. It can be seen that the Rayleigh contribution to total scattering decreases rapidly with the wavelength. In the infrared region there exists approximately 10% of the Mie scattering by collagen fibers that was present in the visible region.

Fig. 7
Fig. 7

Mie component of the reduced-scattering coefficient μ s ′ at 650 nm as predicted by the Mie-scattering theory on the basis of experimentally observed size and number collagen-fiber density distributions as a function of gestational maturity (filled circles). Gestational maturity is defined as the gestational age of the fetus plus the postnatal age. Also shown in this figure are the Mie fractions of the reduced-scattering coefficient deduced from the integrating-sphere measurements (open squares). The Mie fraction of the measured μ s ′ is derived by multiplication of the measured μ s ′ by f Mie at 650 nm [Fig. 4(b)]. The increase in predicted scattering with gestational age is proportional to the increase in measured scattering.

Tables (1)

Tables Icon

Table 1 Gestational Maturity and Measured Collagen-Fiber Diameters and Concentrations for Nine Neonatal-Skin Samplesa

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ρ A ( collagen fibers / mm 2 ) = χ ( collagen fibers / mm ) 5 × 10 - 3 ( mm ) ,
g = 0 π p ( θ ) cos ( θ ) sin ( θ ) d θ 0 π p ( θ ) sin ( θ ) d θ .
σ s = Q s A .
σ s = Q s A ( 1 - g ) .
σ s = k = 1 K Q k A k ( 1 - g k ) f k k = 1 K f k ,
f k = 1 SD 2 π exp [ - ( d k - m ) 2 / 2 SD 2 ] .
μ s = Q s d L ( 1 - g ) ρ A / L ,
μ s = σ s ρ v ,
σ s = σ s ( 1 - g ) = σ s ( 1 - g ) ,
μ s ( l ) = y int ( λ ) + m ( λ ) ( maturity ) ,
y int ( λ ) = 22.5 - 0.1427 λ + 0.0001294 λ 2 ,
m ( λ ) = 2.978 - 0.002999 λ ,
μ s ( Mie ) = A { [ 1 - ( 1.745 × 10 - 3 ) λ ] + ( 9.843 × 10 - 7 ) λ 2 } ,
μ s ( Rayleigh ) = B λ - 4 ,
μ s ( measured ) = μ s ( Mie ) + μ s ( Rayleigh ) = A { [ 1 - ( 1.745 × 10 - 3 ) λ ] + ( 9.843 × 10 - 7 ) λ 2 ) } + B λ - 4 .
f Mie = A { [ 1 - ( 1.745 × 10 - 3 ) λ + ( 9.843 × 10 - 7 ) λ 2 } A { [ 1 - ( 1.745 × 10 - 3 ) λ + ( 9.843 × 10 - 7 ) λ 2 } + B λ - 4 .
μ s ( Mie ) = f Mie [ y int ( λ ) + m ( λ ) ( maturity ) ] .

Metrics