Abstract

A molybdenum/silicon multilayer coating was applied to a holographic ion-etched blazed grating substrate that had 2400 grooves/mm and a radius of curvature of 2.2 m. Scanning probe microscopy yielded the same surface microroughness (5 Å rms) before and after deposition of the multilayer. The efficiency and polarization performance of the grating was measured by synchrotron radiation in the 135–250-Å wavelength region. In the second grating order and the second Bragg order of the multilayer coating, the peak normal-incidence efficiency was 7.5% at a wavelength of 147 Å, representing a groove efficiency of 27%. At an angle of incidence of 35°, the polarization performance of the grating was 95%–100% in the 210–250-Å wavelength region. In a Seya–Namioka spectrometer mount at an angle of incidence of 30°–40°, the grating is a nearly perfect polarizing optical element in the wavelength bands between 125 and 300 Å, which are covered by the multilayer coating.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Kowalski, T. W. Barbee, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Efficiency and long-term stability of a multilayer-coated, ion-etched blazed holographic grating in the 125–133-Å wavelength region,” Appl. Opt. 34, 7338–7346 (1995).
    [CrossRef] [PubMed]
  2. J. C. Rife, W. R. Hunter, T. W. Barbee, R. G. Cruddace, “Multilayer-coated blazed grating performance in the soft x-ray region,” Appl. Opt. 28, 2984–2986 (1989).
    [CrossRef] [PubMed]
  3. J. C. Rife, T. W. Barbee, W. R. Hunter, R. G. Cruddace, “Performance of a tungsten/carbon multilayer-coated, blazed grating from 150 to 1700 eV,” Phys. Scr. 41, 418–421 (1990).
    [CrossRef]
  4. J. F. Seely, C. M. Brown, “Multilayer-coated grating spectrometer operating in the extreme-ultraviolet region and based on the Seya–Namioka mount,” Appl. Opt. 32, 6288–6293 (1993).
    [CrossRef] [PubMed]
  5. M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual-waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
    [CrossRef] [PubMed]
  6. W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A246, 465–468 (1986).
  7. J. C. Rife, W. R. Hunter, R. T. Williams, “Features and initial performance tests of the grating/crystal monochromator,” Nucl. Instrum. Methods A246, 252–255 (1986); J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
    [CrossRef]
  8. M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Uncertainties in reflectance measurements made on the NRL beamline X24C,” NRL Memorandum Rep. (Naval Research Laboratory, Washington, D.C., 1995).
  9. J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo/Si multilayer-coated, concave diffraction grating in the 136–142 Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
    [CrossRef] [PubMed]
  10. B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
    [CrossRef]
  11. J. M. Elson, J. M. Bennett, “Calculation of the power spectral density from surface profile data,” Appl. Opt. 34, 201–208 (1995).
    [CrossRef] [PubMed]
  12. J. F. Seely, W. R. Hunter, J. C. Rife, M. P. Kowalski, “Optical constants of thin silicon films near the silicon L2,3 absorption edge,” Appl. Opt. 31, 7367–7370 (1992).
    [CrossRef] [PubMed]

1995 (2)

1993 (4)

1992 (1)

1990 (1)

J. C. Rife, T. W. Barbee, W. R. Hunter, R. G. Cruddace, “Performance of a tungsten/carbon multilayer-coated, blazed grating from 150 to 1700 eV,” Phys. Scr. 41, 418–421 (1990).
[CrossRef]

1989 (1)

1986 (2)

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A246, 465–468 (1986).

J. C. Rife, W. R. Hunter, R. T. Williams, “Features and initial performance tests of the grating/crystal monochromator,” Nucl. Instrum. Methods A246, 252–255 (1986); J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

Barbee, T. W.

Bennett, J. M.

Boyer, C. N.

Brown, C. M.

Cruddace, R. G.

Davis, J. C.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Elson, J. M.

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Henke, B. L.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Holland, G. E.

Hunter, W. R.

M. P. Kowalski, T. W. Barbee, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Efficiency and long-term stability of a multilayer-coated, ion-etched blazed holographic grating in the 125–133-Å wavelength region,” Appl. Opt. 34, 7338–7346 (1995).
[CrossRef] [PubMed]

M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual-waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
[CrossRef] [PubMed]

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo/Si multilayer-coated, concave diffraction grating in the 136–142 Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
[CrossRef] [PubMed]

J. F. Seely, W. R. Hunter, J. C. Rife, M. P. Kowalski, “Optical constants of thin silicon films near the silicon L2,3 absorption edge,” Appl. Opt. 31, 7367–7370 (1992).
[CrossRef] [PubMed]

J. C. Rife, T. W. Barbee, W. R. Hunter, R. G. Cruddace, “Performance of a tungsten/carbon multilayer-coated, blazed grating from 150 to 1700 eV,” Phys. Scr. 41, 418–421 (1990).
[CrossRef]

J. C. Rife, W. R. Hunter, T. W. Barbee, R. G. Cruddace, “Multilayer-coated blazed grating performance in the soft x-ray region,” Appl. Opt. 28, 2984–2986 (1989).
[CrossRef] [PubMed]

J. C. Rife, W. R. Hunter, R. T. Williams, “Features and initial performance tests of the grating/crystal monochromator,” Nucl. Instrum. Methods A246, 252–255 (1986); J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A246, 465–468 (1986).

M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Uncertainties in reflectance measurements made on the NRL beamline X24C,” NRL Memorandum Rep. (Naval Research Laboratory, Washington, D.C., 1995).

Kowalski, M. P.

Rife, J. C.

M. P. Kowalski, T. W. Barbee, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Efficiency and long-term stability of a multilayer-coated, ion-etched blazed holographic grating in the 125–133-Å wavelength region,” Appl. Opt. 34, 7338–7346 (1995).
[CrossRef] [PubMed]

M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual-waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
[CrossRef] [PubMed]

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo/Si multilayer-coated, concave diffraction grating in the 136–142 Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
[CrossRef] [PubMed]

J. F. Seely, W. R. Hunter, J. C. Rife, M. P. Kowalski, “Optical constants of thin silicon films near the silicon L2,3 absorption edge,” Appl. Opt. 31, 7367–7370 (1992).
[CrossRef] [PubMed]

J. C. Rife, T. W. Barbee, W. R. Hunter, R. G. Cruddace, “Performance of a tungsten/carbon multilayer-coated, blazed grating from 150 to 1700 eV,” Phys. Scr. 41, 418–421 (1990).
[CrossRef]

J. C. Rife, W. R. Hunter, T. W. Barbee, R. G. Cruddace, “Multilayer-coated blazed grating performance in the soft x-ray region,” Appl. Opt. 28, 2984–2986 (1989).
[CrossRef] [PubMed]

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A246, 465–468 (1986).

J. C. Rife, W. R. Hunter, R. T. Williams, “Features and initial performance tests of the grating/crystal monochromator,” Nucl. Instrum. Methods A246, 252–255 (1986); J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Uncertainties in reflectance measurements made on the NRL beamline X24C,” NRL Memorandum Rep. (Naval Research Laboratory, Washington, D.C., 1995).

Seely, J. F.

M. P. Kowalski, T. W. Barbee, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Efficiency and long-term stability of a multilayer-coated, ion-etched blazed holographic grating in the 125–133-Å wavelength region,” Appl. Opt. 34, 7338–7346 (1995).
[CrossRef] [PubMed]

M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual-waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
[CrossRef] [PubMed]

J. F. Seely, C. M. Brown, “Multilayer-coated grating spectrometer operating in the extreme-ultraviolet region and based on the Seya–Namioka mount,” Appl. Opt. 32, 6288–6293 (1993).
[CrossRef] [PubMed]

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo/Si multilayer-coated, concave diffraction grating in the 136–142 Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
[CrossRef] [PubMed]

J. F. Seely, W. R. Hunter, J. C. Rife, M. P. Kowalski, “Optical constants of thin silicon films near the silicon L2,3 absorption edge,” Appl. Opt. 31, 7367–7370 (1992).
[CrossRef] [PubMed]

M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Uncertainties in reflectance measurements made on the NRL beamline X24C,” NRL Memorandum Rep. (Naval Research Laboratory, Washington, D.C., 1995).

Williams, R. T.

J. C. Rife, W. R. Hunter, R. T. Williams, “Features and initial performance tests of the grating/crystal monochromator,” Nucl. Instrum. Methods A246, 252–255 (1986); J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

Appl. Opt. (7)

J. F. Seely, C. M. Brown, “Multilayer-coated grating spectrometer operating in the extreme-ultraviolet region and based on the Seya–Namioka mount,” Appl. Opt. 32, 6288–6293 (1993).
[CrossRef] [PubMed]

M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, R. G. Cruddace, “Dual-waveband operation of a multilayer-coated diffraction grating in the soft x-ray range at near-normal incidence,” Appl. Opt. 32, 2422–2425 (1993).
[CrossRef] [PubMed]

M. P. Kowalski, T. W. Barbee, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Efficiency and long-term stability of a multilayer-coated, ion-etched blazed holographic grating in the 125–133-Å wavelength region,” Appl. Opt. 34, 7338–7346 (1995).
[CrossRef] [PubMed]

J. C. Rife, W. R. Hunter, T. W. Barbee, R. G. Cruddace, “Multilayer-coated blazed grating performance in the soft x-ray region,” Appl. Opt. 28, 2984–2986 (1989).
[CrossRef] [PubMed]

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo/Si multilayer-coated, concave diffraction grating in the 136–142 Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
[CrossRef] [PubMed]

J. M. Elson, J. M. Bennett, “Calculation of the power spectral density from surface profile data,” Appl. Opt. 34, 201–208 (1995).
[CrossRef] [PubMed]

J. F. Seely, W. R. Hunter, J. C. Rife, M. P. Kowalski, “Optical constants of thin silicon films near the silicon L2,3 absorption edge,” Appl. Opt. 31, 7367–7370 (1992).
[CrossRef] [PubMed]

At. Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Nucl. Instrum. Methods (2)

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A246, 465–468 (1986).

J. C. Rife, W. R. Hunter, R. T. Williams, “Features and initial performance tests of the grating/crystal monochromator,” Nucl. Instrum. Methods A246, 252–255 (1986); J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

Phys. Scr. (1)

J. C. Rife, T. W. Barbee, W. R. Hunter, R. G. Cruddace, “Performance of a tungsten/carbon multilayer-coated, blazed grating from 150 to 1700 eV,” Phys. Scr. 41, 418–421 (1990).
[CrossRef]

Other (1)

M. P. Kowalski, R. G. Cruddace, J. F. Seely, J. C. Rife, W. R. Hunter, “Uncertainties in reflectance measurements made on the NRL beamline X24C,” NRL Memorandum Rep. (Naval Research Laboratory, Washington, D.C., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Data points are the measured reflectance of the Mo/Si multilayer coating on the flat witness sample at an angle of incidence of 10°, and the curve is the calculated reflectance for 80% p-polarized incident radiation; (b) the calculated reflectance of the multilayer coating for angles of incidence of 10° and 35° and for 80% s-polarized incident radiation.

Fig. 2
Fig. 2

SPM image of the multilayered-coated grating. The horizontal and the vertical scales have been adjusted to show the texture of the groove profile. The groove spacing is 4170 Å, and the average groove height is 90 Å.

Fig. 3
Fig. 3

Data points are an SPM scan line perpendicular to the grooves of the multilayered-coated grating. (a) The solid curves are polynomials that were fitted to the data points; (b) the deviations of the data points from the polynomial curves.

Fig. 4
Fig. 4

Grating efficiency measured at an angle of incidence of 10° and at wavelengths of (a) 145.3 Å, (b) 146.7 Å, (c) 148.8 Å. The inside (m > 0) and outside (m < 0) grating orders are indicated.

Fig. 5
Fig. 5

The two lower curves are the second-order grating efficiencies measured at 10 and 20 mm from the center of the rules area. The curve with the triangular data points and peaking at 14.5% is the efficiency summed over all the observed orders. The curve with the square data points and peaking at 27% is the measured reflectance of the multilayer coating on the flat witness sample. All measurements were performed at an angle of incidence of 10°.

Fig. 6
Fig. 6

Grating efficiency measured at an angle of incidence of 35° and at the indicated wavelengths: (a)–(c) primarily s-polarized incident radiation, (d)–(f) primarily p-polarized incident radiation. The inside (m > 0) and the outside (m < 0) grating orders are identified in (d), and these identifications apply to (a)–(f).

Fig. 7
Fig. 7

Solid curves are the calculated reflectances of the multilayer coating for an angle of incidence of 23.9° and for incident radiation that is primarily (a) s polarized, (b) p polarized. The data points are the grating efficiencies measured at an angle of incidence of 35° and summed over all the observed orders.

Fig. 8
Fig. 8

Polarization of the incident radiation (triangular data points) and the polarization performance of the grating at an angle of incidence of 35° (square data points).

Tables (2)

Tables Icon

Table 1 Grating Surface Parameters

Tables Icon

Table 2 Grating Efficiencies

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

α = ( I H - I V ) / ( I H + I V ) ,
R = ( R p I H + R s I V ) / ( I H + I V ) ,
R = ( R s I H + R p I V ) / ( I H + I V ) ,
α = ( 1 - R / R ) / ( 1 + R / R ) .
β = ( s - p ) / ( s + p ) ,
= ( p I H + s I V ) / ( I H + I V ) ,
= ( s I H + p I V ) / ( I H + I V ) .
β = ( 1 - γ ) / ( 1 + γ ) ,
γ = ( / - I V / I H ) / [ 1 - ( / ) ( I V / I H ) ] ,
I V / I H = ( 1 - α ) / ( 1 + α ) .

Metrics