Abstract

The relative merits of three standardized methods for assessing the imaging quality of intraocular lenses are discussed based on theoretical modulation-transfer-function calculations. The standards are ANSI Z80.7 1984 from the American National Standards Institute, now superseded by ANSI Z80.7 1994, and the proposed ISO 11979-2 from the International Organization for Standardization. They entail different test configurations and approval limits, respectively: 60% resolution efficiency in air, 70% resolution efficiency in aqueous humor, and 0.43 modulation at 100 line pairs/mm in a model eye. The ISO working group found that the latter corresponds to 60% resolution efficiency in air in a ring test among eight laboratories on a sample of 39 poly(methyl) methacrylate lenses and four silicone lenses spanning the power (in aqueous humor) range of 10–30 D. In both ANSI Z80.7 1994 and ISO 11979-2, a 60% resolution efficiency in air remains an optional approval limit. It is concluded that the ISO configuration is preferred, because it puts the intraocular lens into the context of the optics of the eye. Note that the ISO standard is tentative and is currently being voted on.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Dunn, “The resolving power of intraocular lens implants,” Am. Intraocular Implant Soc. J. 4, 126–129 (1978).
  2. R. J. Olson, H. Kolodner, H. E. Kaufman, “The optical quality of currently manufactured intraocular lenses,” Am. J. Ophthalmol. 88, 548–555 (1979).
    [PubMed]
  3. U.S. Military Standard 150-A-1961, Photographic lenses.
  4. “American national standard for opthalmics—intraocular lenses—optical and physical requirements,” ANSI Z80.7-1984 (American National Standards Institute, New York, 1984).
  5. J. T. Holladay, A. C. Ting, C. J. Koester, V. Portney, T. R. Willis, “Intraocular lens resolution in air and water,” J. Cataract Refract. Surg. 13, 511–517 (1987).
    [PubMed]
  6. J. T. Holladay, A. C. Ting, C. J. Koester, V. Portney, T. R. Willis, “Silicone intraocular lens resolution in air and in water,” J. Cataract Refract. Surg. 14, 657–659 (1988).
    [PubMed]
  7. “American national standard for ophthalmics—intraocular lenses,” ANSI Z80.7-1994 (Optical Laboratories Association, Merrifield, Va., 1994).
  8. “Optics and optical instruments—intraocular lenses. Part 2: Optical requirements and their test methods,” ISO 11979-2 (currently being voted on as a Draft International Standard).
  9. “Ophthalmic optics—intraocular lenses. Part 2: Optical requirements and their test methods,” EN ISO 11979-2 (currently being voted on as a draft European Standard).
  10. N. E. S. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, D. M. Silbermann, “Determination of the imaging quality of intraocular lenses,” (based on interlaboratory tests carried out within the joint working groups ISO/TC 172/SC 7/WG 7 and CEN/TC 170/WG 7), J. Cataract Refract. Surg. (to be published).
  11. R. J. Olson, “Intraocular lens manufacturing quality,” in Intraocular Lens Implantation, E. S. Rosen, W. M. Haining, E. J. Arnott, eds. (Mosby, St. Louis, 1984), pp. 90–98.
  12. R. Navarro, M. Ferro, P. Artal, I. Miranda, “Modulation transfer functions of eyes implanted with intraocular lenses,” Appl. Opt. 32, 6359–6367 (1993).
    [CrossRef] [PubMed]
  13. A. Gullstrand, “Die Dioptrik des Auges,” in Handbuch der physiologischen Optik, H. von Helmholtz, ed. (Leopold Voss, Hamburg, 1909), Vol. 1, pp. 226–320.
  14. P. M. Kiely, G. Smith, L. G. Carney, “The mean shape of the human cornea,” Opt. Acta 29, 1027–1040 (1982).
    [CrossRef]

1993 (1)

1988 (1)

J. T. Holladay, A. C. Ting, C. J. Koester, V. Portney, T. R. Willis, “Silicone intraocular lens resolution in air and in water,” J. Cataract Refract. Surg. 14, 657–659 (1988).
[PubMed]

1987 (1)

J. T. Holladay, A. C. Ting, C. J. Koester, V. Portney, T. R. Willis, “Intraocular lens resolution in air and water,” J. Cataract Refract. Surg. 13, 511–517 (1987).
[PubMed]

1982 (1)

P. M. Kiely, G. Smith, L. G. Carney, “The mean shape of the human cornea,” Opt. Acta 29, 1027–1040 (1982).
[CrossRef]

1979 (1)

R. J. Olson, H. Kolodner, H. E. Kaufman, “The optical quality of currently manufactured intraocular lenses,” Am. J. Ophthalmol. 88, 548–555 (1979).
[PubMed]

1978 (1)

M. J. Dunn, “The resolving power of intraocular lens implants,” Am. Intraocular Implant Soc. J. 4, 126–129 (1978).

Artal, P.

Carney, L. G.

P. M. Kiely, G. Smith, L. G. Carney, “The mean shape of the human cornea,” Opt. Acta 29, 1027–1040 (1982).
[CrossRef]

Dunn, M. J.

M. J. Dunn, “The resolving power of intraocular lens implants,” Am. Intraocular Implant Soc. J. 4, 126–129 (1978).

Ferro, M.

Geraghty, E. P.

N. E. S. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, D. M. Silbermann, “Determination of the imaging quality of intraocular lenses,” (based on interlaboratory tests carried out within the joint working groups ISO/TC 172/SC 7/WG 7 and CEN/TC 170/WG 7), J. Cataract Refract. Surg. (to be published).

Grossman, L. W.

N. E. S. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, D. M. Silbermann, “Determination of the imaging quality of intraocular lenses,” (based on interlaboratory tests carried out within the joint working groups ISO/TC 172/SC 7/WG 7 and CEN/TC 170/WG 7), J. Cataract Refract. Surg. (to be published).

Gullstrand, A.

A. Gullstrand, “Die Dioptrik des Auges,” in Handbuch der physiologischen Optik, H. von Helmholtz, ed. (Leopold Voss, Hamburg, 1909), Vol. 1, pp. 226–320.

Holladay, J. T.

J. T. Holladay, A. C. Ting, C. J. Koester, V. Portney, T. R. Willis, “Silicone intraocular lens resolution in air and in water,” J. Cataract Refract. Surg. 14, 657–659 (1988).
[PubMed]

J. T. Holladay, A. C. Ting, C. J. Koester, V. Portney, T. R. Willis, “Intraocular lens resolution in air and water,” J. Cataract Refract. Surg. 13, 511–517 (1987).
[PubMed]

Kaufman, H. E.

R. J. Olson, H. Kolodner, H. E. Kaufman, “The optical quality of currently manufactured intraocular lenses,” Am. J. Ophthalmol. 88, 548–555 (1979).
[PubMed]

Kiely, P. M.

P. M. Kiely, G. Smith, L. G. Carney, “The mean shape of the human cornea,” Opt. Acta 29, 1027–1040 (1982).
[CrossRef]

Koester, C. J.

J. T. Holladay, A. C. Ting, C. J. Koester, V. Portney, T. R. Willis, “Silicone intraocular lens resolution in air and in water,” J. Cataract Refract. Surg. 14, 657–659 (1988).
[PubMed]

J. T. Holladay, A. C. Ting, C. J. Koester, V. Portney, T. R. Willis, “Intraocular lens resolution in air and water,” J. Cataract Refract. Surg. 13, 511–517 (1987).
[PubMed]

Kolodner, H.

R. J. Olson, H. Kolodner, H. E. Kaufman, “The optical quality of currently manufactured intraocular lenses,” Am. J. Ophthalmol. 88, 548–555 (1979).
[PubMed]

Kreiner, C. F.

N. E. S. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, D. M. Silbermann, “Determination of the imaging quality of intraocular lenses,” (based on interlaboratory tests carried out within the joint working groups ISO/TC 172/SC 7/WG 7 and CEN/TC 170/WG 7), J. Cataract Refract. Surg. (to be published).

Mihori, M.

N. E. S. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, D. M. Silbermann, “Determination of the imaging quality of intraocular lenses,” (based on interlaboratory tests carried out within the joint working groups ISO/TC 172/SC 7/WG 7 and CEN/TC 170/WG 7), J. Cataract Refract. Surg. (to be published).

Miranda, I.

Navarro, R.

Norrby, N. E. S.

N. E. S. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, D. M. Silbermann, “Determination of the imaging quality of intraocular lenses,” (based on interlaboratory tests carried out within the joint working groups ISO/TC 172/SC 7/WG 7 and CEN/TC 170/WG 7), J. Cataract Refract. Surg. (to be published).

Olson, R. J.

R. J. Olson, H. Kolodner, H. E. Kaufman, “The optical quality of currently manufactured intraocular lenses,” Am. J. Ophthalmol. 88, 548–555 (1979).
[PubMed]

R. J. Olson, “Intraocular lens manufacturing quality,” in Intraocular Lens Implantation, E. S. Rosen, W. M. Haining, E. J. Arnott, eds. (Mosby, St. Louis, 1984), pp. 90–98.

Patel, A. S.

N. E. S. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, D. M. Silbermann, “Determination of the imaging quality of intraocular lenses,” (based on interlaboratory tests carried out within the joint working groups ISO/TC 172/SC 7/WG 7 and CEN/TC 170/WG 7), J. Cataract Refract. Surg. (to be published).

Portney, V.

J. T. Holladay, A. C. Ting, C. J. Koester, V. Portney, T. R. Willis, “Silicone intraocular lens resolution in air and in water,” J. Cataract Refract. Surg. 14, 657–659 (1988).
[PubMed]

J. T. Holladay, A. C. Ting, C. J. Koester, V. Portney, T. R. Willis, “Intraocular lens resolution in air and water,” J. Cataract Refract. Surg. 13, 511–517 (1987).
[PubMed]

N. E. S. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, D. M. Silbermann, “Determination of the imaging quality of intraocular lenses,” (based on interlaboratory tests carried out within the joint working groups ISO/TC 172/SC 7/WG 7 and CEN/TC 170/WG 7), J. Cataract Refract. Surg. (to be published).

Silbermann, D. M.

N. E. S. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, D. M. Silbermann, “Determination of the imaging quality of intraocular lenses,” (based on interlaboratory tests carried out within the joint working groups ISO/TC 172/SC 7/WG 7 and CEN/TC 170/WG 7), J. Cataract Refract. Surg. (to be published).

Smith, G.

P. M. Kiely, G. Smith, L. G. Carney, “The mean shape of the human cornea,” Opt. Acta 29, 1027–1040 (1982).
[CrossRef]

Ting, A. C.

J. T. Holladay, A. C. Ting, C. J. Koester, V. Portney, T. R. Willis, “Silicone intraocular lens resolution in air and in water,” J. Cataract Refract. Surg. 14, 657–659 (1988).
[PubMed]

J. T. Holladay, A. C. Ting, C. J. Koester, V. Portney, T. R. Willis, “Intraocular lens resolution in air and water,” J. Cataract Refract. Surg. 13, 511–517 (1987).
[PubMed]

Willis, T. R.

J. T. Holladay, A. C. Ting, C. J. Koester, V. Portney, T. R. Willis, “Silicone intraocular lens resolution in air and in water,” J. Cataract Refract. Surg. 14, 657–659 (1988).
[PubMed]

J. T. Holladay, A. C. Ting, C. J. Koester, V. Portney, T. R. Willis, “Intraocular lens resolution in air and water,” J. Cataract Refract. Surg. 13, 511–517 (1987).
[PubMed]

Am. Intraocular Implant Soc. J. (1)

M. J. Dunn, “The resolving power of intraocular lens implants,” Am. Intraocular Implant Soc. J. 4, 126–129 (1978).

Am. J. Ophthalmol. (1)

R. J. Olson, H. Kolodner, H. E. Kaufman, “The optical quality of currently manufactured intraocular lenses,” Am. J. Ophthalmol. 88, 548–555 (1979).
[PubMed]

Appl. Opt. (1)

J. Cataract Refract. Surg. (2)

J. T. Holladay, A. C. Ting, C. J. Koester, V. Portney, T. R. Willis, “Intraocular lens resolution in air and water,” J. Cataract Refract. Surg. 13, 511–517 (1987).
[PubMed]

J. T. Holladay, A. C. Ting, C. J. Koester, V. Portney, T. R. Willis, “Silicone intraocular lens resolution in air and in water,” J. Cataract Refract. Surg. 14, 657–659 (1988).
[PubMed]

Opt. Acta (1)

P. M. Kiely, G. Smith, L. G. Carney, “The mean shape of the human cornea,” Opt. Acta 29, 1027–1040 (1982).
[CrossRef]

Other (8)

A. Gullstrand, “Die Dioptrik des Auges,” in Handbuch der physiologischen Optik, H. von Helmholtz, ed. (Leopold Voss, Hamburg, 1909), Vol. 1, pp. 226–320.

“American national standard for ophthalmics—intraocular lenses,” ANSI Z80.7-1994 (Optical Laboratories Association, Merrifield, Va., 1994).

“Optics and optical instruments—intraocular lenses. Part 2: Optical requirements and their test methods,” ISO 11979-2 (currently being voted on as a Draft International Standard).

“Ophthalmic optics—intraocular lenses. Part 2: Optical requirements and their test methods,” EN ISO 11979-2 (currently being voted on as a draft European Standard).

N. E. S. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, D. M. Silbermann, “Determination of the imaging quality of intraocular lenses,” (based on interlaboratory tests carried out within the joint working groups ISO/TC 172/SC 7/WG 7 and CEN/TC 170/WG 7), J. Cataract Refract. Surg. (to be published).

R. J. Olson, “Intraocular lens manufacturing quality,” in Intraocular Lens Implantation, E. S. Rosen, W. M. Haining, E. J. Arnott, eds. (Mosby, St. Louis, 1984), pp. 90–98.

U.S. Military Standard 150-A-1961, Photographic lenses.

“American national standard for opthalmics—intraocular lenses—optical and physical requirements,” ANSI Z80.7-1984 (American National Standards Institute, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Calculated MTF curves of intraocular lenses with different refractive indices in air. Refractive indices: (a) 1.415 (LoSil), (b) 1.46 (HiSil), (c) 1.4915 (PMMA), (d) 1.55 (HiAcrylic). Dioptric powers: ×, 10 D; ○, 20 D; +, 30 D. The diffraction-limited curve is shown as a dashed curve.

Fig. 2
Fig. 2

Calculated MTF curves of intraocular lenses with different refractive indices in the wet cell. Refractive indices: (a) 1.415 (LoSil), (b) 1.46 (HiSil), (c) 1.4915 (PMMA), (d) 1.55 (HiAcrylic). Dioptric powers: ×, 10 D; ○, 20 D; +, 30 D. The diffraction-limited curve is shown as a dashed curve.

Fig. 3
Fig. 3

Calculated MTF curves of intraocular lenses with different refractive indices in the ISO eye model. Refractive indices: (a) 1.415 (LoSil), (b) 1.46 (HiSil), (c) 1.4915 (PMMA), (d) 1.55 (HiAcrylic). Dioptric powers: ×, 10 D; ○, 20 D; +, 30 D. The diffraction-limited curve is shown as a dashed curve.

Fig. 4
Fig. 4

Calculated MTF curves of 20-D PMMA intraocular lenses with different optic shapes (a) in air, (b) in the wet cell, and (c) in the ISO eye model. Optic shapes: ×, convex–plano; ○, equibiconvex; +, plano–convex. The diffraction-limited curve is shown as a dashed curve.

Fig. 5
Fig. 5

Calculated MTF curves for the effect of choice of focusing frequency of a 30-D equibiconvex PMMA intraocular lens (a) in air and (b) in the wet cell: ×, focus at the normalized spatial frequencies of 0.6 and 0.7, respectively; +, focus at the normalized spatial frequency of 0.3 in both cases. The diffraction limit is shown as a dashed curve.

Fig. 6
Fig. 6

Calculated MTF curves of a 20-D equibiconvex PMMA intraocular lens behind different corneas: ×, Gullstrand13; ○, average real cornea14; +, ISO eye model.8 The diffraction limit is shown as a dashed curve.

Fig. 7
Fig. 7

Theoretically obtainable imaging quality of equibiconvex intraocular lenses as a function of intraocular lens power in different test configurations: (a) ANSI 1984,4 resolution efficiency in air; (b) ANSI 1994,7 resolution efficiency in the wet cell; (c) ISO,8 MTF at 100 line pairs/mm in a model eye: ×, LoSil, RI = 1.415; ○, HiSil, RI = 1.46; +, PMMA, RI = 1.4915; □, HiAcrylic, RI = 1.55. The dashed lines represent the approval limits of the different standards.

Tables (2)

Tables Icon

Table 1 Possible Realization of the Model Eye of the ISO Standarda

Tables Icon

Table 2 Cutoff Spatial Frequency and f Number for the Different Test Configurations, Depending on Intraocular Lens Dioptric Power

Metrics