Abstract

The design of a monolithic imaging Fourier-transform spectrometer based on a Sagnac interferometer is discussed.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Yoshihara, A. Kitade, “Holographic spectra using a triangle path interferometer,” Jpn. J. Appl. Phys. 6, 116 (1967).
    [CrossRef]
  2. T. Okamoto, S. Kawata, S. Minami, “Fourier transform spectrometer with a self-scanning photodiode array,” Appl. Opt. 23, 269–273 (1984).
    [CrossRef] [PubMed]
  3. T. H. Barnes, “Photodiode array Fourier transform spectrometer with improved dynamic range,” Appl. Opt. 24, 3702–3706 (1985).
    [CrossRef] [PubMed]
  4. J. B. Sweedler, M. B. Denton, “Spatially encoded Fourier transform spectroscopy in the ultraviolet to near-infrared,” Appl. Spectrosc. 43, 1378–1384 (1989).
    [CrossRef]
  5. W. H. Smith, W. V. Schempp, “Digital array scanned interferometers for astronomy,” Exp. Astron. 1, 389–405 (1991).
    [CrossRef]
  6. J. B. Rafert, P. G. Lucey, H. Newby, “A spatially modulated imaging Fourier transform spectrometer for astronomical and booster plume observations,” in Proceedings of the European Southern Observatory Conference on Progress in Telescope and Instrumentation Technologies (European Southern Observatory, Garching, Germany, 1992), pp. 721–724.
  7. M. L. Junttila, “Stationary Fourier-transform spectrometer,” Appl. Opt. 31, 4106–4112 (1992).
    [CrossRef] [PubMed]
  8. P. G. Lucey, T. Williams, K. Horton, K. Hinck, C. Budney, J. B. Rafert, E. T. Rusk, “SMIFTS: a cryogenetically cooled, spatially modulated, imaging, Fourier-transform spectrometer for remote sensing applications,” in Proceedings of the International Symposium on Spectral Sensing Research (Science and Technology Corp., Hampton, Va., 1992), Vol. 1, pp. 251–262.
  9. R. G. Sellar, J. B. Rafert, “The effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33(a), 3087–3092 (1994).
    [CrossRef]
  10. R. G. Sellar, J. B. Rafert, “Fourier-transform imaging spectrometer with a single toroidal optic,” Appl. Opt. 34, 2931–2933 (1995).
    [CrossRef] [PubMed]

1995 (1)

1994 (1)

R. G. Sellar, J. B. Rafert, “The effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33(a), 3087–3092 (1994).
[CrossRef]

1992 (1)

1991 (1)

W. H. Smith, W. V. Schempp, “Digital array scanned interferometers for astronomy,” Exp. Astron. 1, 389–405 (1991).
[CrossRef]

1989 (1)

1985 (1)

1984 (1)

1967 (1)

K. Yoshihara, A. Kitade, “Holographic spectra using a triangle path interferometer,” Jpn. J. Appl. Phys. 6, 116 (1967).
[CrossRef]

Barnes, T. H.

Budney, C.

P. G. Lucey, T. Williams, K. Horton, K. Hinck, C. Budney, J. B. Rafert, E. T. Rusk, “SMIFTS: a cryogenetically cooled, spatially modulated, imaging, Fourier-transform spectrometer for remote sensing applications,” in Proceedings of the International Symposium on Spectral Sensing Research (Science and Technology Corp., Hampton, Va., 1992), Vol. 1, pp. 251–262.

Denton, M. B.

Hinck, K.

P. G. Lucey, T. Williams, K. Horton, K. Hinck, C. Budney, J. B. Rafert, E. T. Rusk, “SMIFTS: a cryogenetically cooled, spatially modulated, imaging, Fourier-transform spectrometer for remote sensing applications,” in Proceedings of the International Symposium on Spectral Sensing Research (Science and Technology Corp., Hampton, Va., 1992), Vol. 1, pp. 251–262.

Horton, K.

P. G. Lucey, T. Williams, K. Horton, K. Hinck, C. Budney, J. B. Rafert, E. T. Rusk, “SMIFTS: a cryogenetically cooled, spatially modulated, imaging, Fourier-transform spectrometer for remote sensing applications,” in Proceedings of the International Symposium on Spectral Sensing Research (Science and Technology Corp., Hampton, Va., 1992), Vol. 1, pp. 251–262.

Junttila, M. L.

Kawata, S.

Kitade, A.

K. Yoshihara, A. Kitade, “Holographic spectra using a triangle path interferometer,” Jpn. J. Appl. Phys. 6, 116 (1967).
[CrossRef]

Lucey, P. G.

P. G. Lucey, T. Williams, K. Horton, K. Hinck, C. Budney, J. B. Rafert, E. T. Rusk, “SMIFTS: a cryogenetically cooled, spatially modulated, imaging, Fourier-transform spectrometer for remote sensing applications,” in Proceedings of the International Symposium on Spectral Sensing Research (Science and Technology Corp., Hampton, Va., 1992), Vol. 1, pp. 251–262.

J. B. Rafert, P. G. Lucey, H. Newby, “A spatially modulated imaging Fourier transform spectrometer for astronomical and booster plume observations,” in Proceedings of the European Southern Observatory Conference on Progress in Telescope and Instrumentation Technologies (European Southern Observatory, Garching, Germany, 1992), pp. 721–724.

Minami, S.

Newby, H.

J. B. Rafert, P. G. Lucey, H. Newby, “A spatially modulated imaging Fourier transform spectrometer for astronomical and booster plume observations,” in Proceedings of the European Southern Observatory Conference on Progress in Telescope and Instrumentation Technologies (European Southern Observatory, Garching, Germany, 1992), pp. 721–724.

Okamoto, T.

Rafert, J. B.

R. G. Sellar, J. B. Rafert, “Fourier-transform imaging spectrometer with a single toroidal optic,” Appl. Opt. 34, 2931–2933 (1995).
[CrossRef] [PubMed]

R. G. Sellar, J. B. Rafert, “The effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33(a), 3087–3092 (1994).
[CrossRef]

P. G. Lucey, T. Williams, K. Horton, K. Hinck, C. Budney, J. B. Rafert, E. T. Rusk, “SMIFTS: a cryogenetically cooled, spatially modulated, imaging, Fourier-transform spectrometer for remote sensing applications,” in Proceedings of the International Symposium on Spectral Sensing Research (Science and Technology Corp., Hampton, Va., 1992), Vol. 1, pp. 251–262.

J. B. Rafert, P. G. Lucey, H. Newby, “A spatially modulated imaging Fourier transform spectrometer for astronomical and booster plume observations,” in Proceedings of the European Southern Observatory Conference on Progress in Telescope and Instrumentation Technologies (European Southern Observatory, Garching, Germany, 1992), pp. 721–724.

Rusk, E. T.

P. G. Lucey, T. Williams, K. Horton, K. Hinck, C. Budney, J. B. Rafert, E. T. Rusk, “SMIFTS: a cryogenetically cooled, spatially modulated, imaging, Fourier-transform spectrometer for remote sensing applications,” in Proceedings of the International Symposium on Spectral Sensing Research (Science and Technology Corp., Hampton, Va., 1992), Vol. 1, pp. 251–262.

Schempp, W. V.

W. H. Smith, W. V. Schempp, “Digital array scanned interferometers for astronomy,” Exp. Astron. 1, 389–405 (1991).
[CrossRef]

Sellar, R. G.

R. G. Sellar, J. B. Rafert, “Fourier-transform imaging spectrometer with a single toroidal optic,” Appl. Opt. 34, 2931–2933 (1995).
[CrossRef] [PubMed]

R. G. Sellar, J. B. Rafert, “The effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33(a), 3087–3092 (1994).
[CrossRef]

Smith, W. H.

W. H. Smith, W. V. Schempp, “Digital array scanned interferometers for astronomy,” Exp. Astron. 1, 389–405 (1991).
[CrossRef]

Sweedler, J. B.

Williams, T.

P. G. Lucey, T. Williams, K. Horton, K. Hinck, C. Budney, J. B. Rafert, E. T. Rusk, “SMIFTS: a cryogenetically cooled, spatially modulated, imaging, Fourier-transform spectrometer for remote sensing applications,” in Proceedings of the International Symposium on Spectral Sensing Research (Science and Technology Corp., Hampton, Va., 1992), Vol. 1, pp. 251–262.

Yoshihara, K.

K. Yoshihara, A. Kitade, “Holographic spectra using a triangle path interferometer,” Jpn. J. Appl. Phys. 6, 116 (1967).
[CrossRef]

Appl. Opt. (4)

Appl. Spectrosc. (1)

Exp. Astron. (1)

W. H. Smith, W. V. Schempp, “Digital array scanned interferometers for astronomy,” Exp. Astron. 1, 389–405 (1991).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Yoshihara, A. Kitade, “Holographic spectra using a triangle path interferometer,” Jpn. J. Appl. Phys. 6, 116 (1967).
[CrossRef]

Opt. Eng. (1)

R. G. Sellar, J. B. Rafert, “The effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33(a), 3087–3092 (1994).
[CrossRef]

Other (2)

P. G. Lucey, T. Williams, K. Horton, K. Hinck, C. Budney, J. B. Rafert, E. T. Rusk, “SMIFTS: a cryogenetically cooled, spatially modulated, imaging, Fourier-transform spectrometer for remote sensing applications,” in Proceedings of the International Symposium on Spectral Sensing Research (Science and Technology Corp., Hampton, Va., 1992), Vol. 1, pp. 251–262.

J. B. Rafert, P. G. Lucey, H. Newby, “A spatially modulated imaging Fourier transform spectrometer for astronomical and booster plume observations,” in Proceedings of the European Southern Observatory Conference on Progress in Telescope and Instrumentation Technologies (European Southern Observatory, Garching, Germany, 1992), pp. 721–724.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Spatially modulated, imaging, monolithic Fourier-transform spectrometer showing (a) the monolithic interferometer assembly (b) the Fourier optic, (c) the cylindrical optic, and (d) the detector.

Fig. 2
Fig. 2

Expanded view of the monolithic interferometer assembly showing (a) an incident ray, (b) the beam-splitter interface, (c) the interferometer mirrors, and (d) the two rays exiting to the Fourier optic. The beam-splitter interface extends only partially to the far edge of the interferometer assembly. S 0 is the separation (lateral shift) created between the two virtual sources.

Fig. 3
Fig. 3

Expanded view of the monolithic interferometer assembly showing the aperture width w and the equilateral-triangle path with sides of length a. The mirror offset (which causes the source separation and the path difference) has been set to zero in this diagram for clarity.

Tables (1)

Tables Icon

Table 1 Results of Thermal-Stability Calculations for Three Interferometer Designs

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

w a = tan 30 ° .
θ = 2 tan - 1 ( w 8 a ) 8 ° ,
θ = 2 tan - 1 ( w 4 a ) 16 ° ,
sin θ 2 = n sin θ 2 .
1 s d S d T = d n d T + n ( 1 s d s d T ) = d n d T + n α ,

Metrics