Abstract

A holographic setup that involves the use of a multicore optical fiber as an in situ recording medium has been developed. The hologram is transmitted to a CCD camera for electronic processing, and the image is reconstructed numerically, providing more flexibility to the holographic process. The performances of this imaging system have been evaluated in terms of the resolution limit and robustness relative to noise. The experimental cutoff frequency has been measured experimentally over a range of observation distances (4–10 mm) and presents a very good agreement with the predictions made by simulation. The system features a resolution of 5-μm objects for a 4-mm observation distance. The different sources of noise have been analyzed, and their influence on resolution has been proved to be nonrelevant.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Hadbawnik, “Holographische endoskopie,” Optik 45, 21–38 (1976).
  2. G. Raviv, M. E. Marhic, E. F. Scanlon, S. F. Sener, M. Epstein, “In vivo holography of vocal chords,” J. Surg. Oncol. 20, 213–217 (1982).
    [Crossref] [PubMed]
  3. H. I. Bjelkhagen, M. D. Friedman, M. Epstein, “Holographic high resolution endoscopy through optical fibers,” Proc. Laser Inst. Am. 64, 94–103 (1988).
  4. H. I. Bjelkhagen, J. Chang, K. Moneke, “High-resolution contact Denisyuk holography,” Appl. Opt. 31, 1041–1047 (1992).
    [Crossref] [PubMed]
  5. G. von Bally, “Otoscopic investigations by holographic interferometry: a fiber endoscopic approach using a pulsed ruby laser system,” in Proceedings of the International Conference on Optics in Biomedical Sciences, G. von Bally, P. Greguss, eds. (Springer-Verlag, Berlin, 1982), pp. 110–114.
  6. J. A. Gilbert, T. D. Dudderar, A. Nose, “Remote deformation field measurement through different media using fiber optics,” Opt. Eng. 24, 628–631 (1985).
  7. H. Podbielska, A. Friesem, “Endoscopic optical metrology—the possibilities of holographic interferometry,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1201, 552–560 (1990).
  8. T. D. Dudderar, J. A. Gilbert, A. J. Boehnlein, “Achieving stability in remote holography using flexible multimode image bundles,” Appl. Opt. 22, 1000–1005 (1983).
    [Crossref] [PubMed]
  9. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt. 31, 4973–4978 (1992).
    [Crossref] [PubMed]
  10. U. Schnars, W. Juptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [Crossref] [PubMed]
  11. E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P. -C. Sun, J. Valdmanis, G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992).
    [Crossref]
  12. H. M. Smith, Principles of Holography (Wiley, New York, 1975), Chap. 3.
  13. D. Gabor, W. P. Goss, “Interference microscope with total wavefront reconstruction,” J. Opt. Soc. Am. 56, 849–858 (1966).
    [Crossref]
  14. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968), Chap. 6.
  15. J. B. DeVelis, G. O. Reynolds, “Fresnel holography,” in Handbook of Optical Holography, H. J. Caulfield, ed. (Academic, New York, 1979), pp. 139–155.
  16. W. B. Spillman, B. R. Kline, L. B. Maurice, P. L. Fuhr, “Statistical-mode sensor for fiber optic vibration sensing uses,” Appl. Opt. 28, 3166–3176 (1989).
    [Crossref] [PubMed]
  17. C. O. Egalon, R. S. Rogowski, “Model of an axially strained weakly guiding optical fiber modal pattern,” Opt. Eng. 31, 1332–1339 (1992).
    [Crossref]
  18. O. Coquoz, C. Depeursinge, R. Conde, F. Taleblou, “Performance of on-axis holography with a flexible endoscope,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1889, 216–223 (1993).
  19. Edmund Scientific Company, Barrington, N.J. 08007-1380.

1994 (1)

1992 (4)

1989 (1)

1988 (1)

H. I. Bjelkhagen, M. D. Friedman, M. Epstein, “Holographic high resolution endoscopy through optical fibers,” Proc. Laser Inst. Am. 64, 94–103 (1988).

1985 (1)

J. A. Gilbert, T. D. Dudderar, A. Nose, “Remote deformation field measurement through different media using fiber optics,” Opt. Eng. 24, 628–631 (1985).

1983 (1)

1982 (1)

G. Raviv, M. E. Marhic, E. F. Scanlon, S. F. Sener, M. Epstein, “In vivo holography of vocal chords,” J. Surg. Oncol. 20, 213–217 (1982).
[Crossref] [PubMed]

1976 (1)

D. Hadbawnik, “Holographische endoskopie,” Optik 45, 21–38 (1976).

1966 (1)

Bjelkhagen, H. I.

H. I. Bjelkhagen, J. Chang, K. Moneke, “High-resolution contact Denisyuk holography,” Appl. Opt. 31, 1041–1047 (1992).
[Crossref] [PubMed]

H. I. Bjelkhagen, M. D. Friedman, M. Epstein, “Holographic high resolution endoscopy through optical fibers,” Proc. Laser Inst. Am. 64, 94–103 (1988).

Boehnlein, A. J.

Boyer, K.

Chang, J.

Chen, C.

Chen, H.

Chen, Y.

Conde, R.

O. Coquoz, C. Depeursinge, R. Conde, F. Taleblou, “Performance of on-axis holography with a flexible endoscope,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1889, 216–223 (1993).

Coquoz, O.

O. Coquoz, C. Depeursinge, R. Conde, F. Taleblou, “Performance of on-axis holography with a flexible endoscope,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1889, 216–223 (1993).

Cullen, D.

Depeursinge, C.

O. Coquoz, C. Depeursinge, R. Conde, F. Taleblou, “Performance of on-axis holography with a flexible endoscope,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1889, 216–223 (1993).

DeVelis, J. B.

J. B. DeVelis, G. O. Reynolds, “Fresnel holography,” in Handbook of Optical Holography, H. J. Caulfield, ed. (Academic, New York, 1979), pp. 139–155.

Dilworth, D.

Dudderar, T. D.

J. A. Gilbert, T. D. Dudderar, A. Nose, “Remote deformation field measurement through different media using fiber optics,” Opt. Eng. 24, 628–631 (1985).

T. D. Dudderar, J. A. Gilbert, A. J. Boehnlein, “Achieving stability in remote holography using flexible multimode image bundles,” Appl. Opt. 22, 1000–1005 (1983).
[Crossref] [PubMed]

Egalon, C. O.

C. O. Egalon, R. S. Rogowski, “Model of an axially strained weakly guiding optical fiber modal pattern,” Opt. Eng. 31, 1332–1339 (1992).
[Crossref]

Epstein, M.

H. I. Bjelkhagen, M. D. Friedman, M. Epstein, “Holographic high resolution endoscopy through optical fibers,” Proc. Laser Inst. Am. 64, 94–103 (1988).

G. Raviv, M. E. Marhic, E. F. Scanlon, S. F. Sener, M. Epstein, “In vivo holography of vocal chords,” J. Surg. Oncol. 20, 213–217 (1982).
[Crossref] [PubMed]

Friedman, M. D.

H. I. Bjelkhagen, M. D. Friedman, M. Epstein, “Holographic high resolution endoscopy through optical fibers,” Proc. Laser Inst. Am. 64, 94–103 (1988).

Friesem, A.

H. Podbielska, A. Friesem, “Endoscopic optical metrology—the possibilities of holographic interferometry,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1201, 552–560 (1990).

Fuhr, P. L.

Gabor, D.

Gilbert, J. A.

J. A. Gilbert, T. D. Dudderar, A. Nose, “Remote deformation field measurement through different media using fiber optics,” Opt. Eng. 24, 628–631 (1985).

T. D. Dudderar, J. A. Gilbert, A. J. Boehnlein, “Achieving stability in remote holography using flexible multimode image bundles,” Appl. Opt. 22, 1000–1005 (1983).
[Crossref] [PubMed]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968), Chap. 6.

Goss, W. P.

Hadbawnik, D.

D. Hadbawnik, “Holographische endoskopie,” Optik 45, 21–38 (1976).

Haddad, W. S.

Juptner, W.

Kline, B. R.

Leith, E.

Longworth, J. W.

Lopez, J.

Marhic, M. E.

G. Raviv, M. E. Marhic, E. F. Scanlon, S. F. Sener, M. Epstein, “In vivo holography of vocal chords,” J. Surg. Oncol. 20, 213–217 (1982).
[Crossref] [PubMed]

Maurice, L. B.

McPherson, A.

Moneke, K.

Nose, A.

J. A. Gilbert, T. D. Dudderar, A. Nose, “Remote deformation field measurement through different media using fiber optics,” Opt. Eng. 24, 628–631 (1985).

Podbielska, H.

H. Podbielska, A. Friesem, “Endoscopic optical metrology—the possibilities of holographic interferometry,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1201, 552–560 (1990).

Raviv, G.

G. Raviv, M. E. Marhic, E. F. Scanlon, S. F. Sener, M. Epstein, “In vivo holography of vocal chords,” J. Surg. Oncol. 20, 213–217 (1982).
[Crossref] [PubMed]

Reynolds, G. O.

J. B. DeVelis, G. O. Reynolds, “Fresnel holography,” in Handbook of Optical Holography, H. J. Caulfield, ed. (Academic, New York, 1979), pp. 139–155.

Rhodes, C. K.

Rogowski, R. S.

C. O. Egalon, R. S. Rogowski, “Model of an axially strained weakly guiding optical fiber modal pattern,” Opt. Eng. 31, 1332–1339 (1992).
[Crossref]

Rudd, J.

Scanlon, E. F.

G. Raviv, M. E. Marhic, E. F. Scanlon, S. F. Sener, M. Epstein, “In vivo holography of vocal chords,” J. Surg. Oncol. 20, 213–217 (1982).
[Crossref] [PubMed]

Schnars, U.

Sener, S. F.

G. Raviv, M. E. Marhic, E. F. Scanlon, S. F. Sener, M. Epstein, “In vivo holography of vocal chords,” J. Surg. Oncol. 20, 213–217 (1982).
[Crossref] [PubMed]

Smith, H. M.

H. M. Smith, Principles of Holography (Wiley, New York, 1975), Chap. 3.

Solem, J. C.

Spillman, W. B.

Sun, P. -C.

Taleblou, F.

O. Coquoz, C. Depeursinge, R. Conde, F. Taleblou, “Performance of on-axis holography with a flexible endoscope,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1889, 216–223 (1993).

Valdmanis, J.

von Bally, G.

G. von Bally, “Otoscopic investigations by holographic interferometry: a fiber endoscopic approach using a pulsed ruby laser system,” in Proceedings of the International Conference on Optics in Biomedical Sciences, G. von Bally, P. Greguss, eds. (Springer-Verlag, Berlin, 1982), pp. 110–114.

Vossler, G.

Appl. Opt. (5)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Surg. Oncol. (1)

G. Raviv, M. E. Marhic, E. F. Scanlon, S. F. Sener, M. Epstein, “In vivo holography of vocal chords,” J. Surg. Oncol. 20, 213–217 (1982).
[Crossref] [PubMed]

Opt. Eng. (2)

J. A. Gilbert, T. D. Dudderar, A. Nose, “Remote deformation field measurement through different media using fiber optics,” Opt. Eng. 24, 628–631 (1985).

C. O. Egalon, R. S. Rogowski, “Model of an axially strained weakly guiding optical fiber modal pattern,” Opt. Eng. 31, 1332–1339 (1992).
[Crossref]

Optik (1)

D. Hadbawnik, “Holographische endoskopie,” Optik 45, 21–38 (1976).

Proc. Laser Inst. Am. (1)

H. I. Bjelkhagen, M. D. Friedman, M. Epstein, “Holographic high resolution endoscopy through optical fibers,” Proc. Laser Inst. Am. 64, 94–103 (1988).

Other (7)

G. von Bally, “Otoscopic investigations by holographic interferometry: a fiber endoscopic approach using a pulsed ruby laser system,” in Proceedings of the International Conference on Optics in Biomedical Sciences, G. von Bally, P. Greguss, eds. (Springer-Verlag, Berlin, 1982), pp. 110–114.

H. M. Smith, Principles of Holography (Wiley, New York, 1975), Chap. 3.

O. Coquoz, C. Depeursinge, R. Conde, F. Taleblou, “Performance of on-axis holography with a flexible endoscope,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1889, 216–223 (1993).

Edmund Scientific Company, Barrington, N.J. 08007-1380.

H. Podbielska, A. Friesem, “Endoscopic optical metrology—the possibilities of holographic interferometry,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1201, 552–560 (1990).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968), Chap. 6.

J. B. DeVelis, G. O. Reynolds, “Fresnel holography,” in Handbook of Optical Holography, H. J. Caulfield, ed. (Academic, New York, 1979), pp. 139–155.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic arrangement of the holographic setup.

Fig. 2
Fig. 2

Experimental setup: F, the neutral-density filter; L, lens; BS, beam splitter; O, object; LS, loudspeaker.

Fig. 3
Fig. 3

Detail of the distal part of the experimental setup; AR, antireflection; BS and O, as defined in Fig. 2 caption.

Fig. 4
Fig. 4

Top, hologram of USAF test target patterns (elements of group 6) collected on the MCF and digitized on a CCD camera. Bottom, the focused reconstructed image shows patterns of frequency of 64 lp/mm (vertical and horizontal patterns at right), and 80.6, 90.5, 102, and 114 lp/mm (vertical patterns top to bottom at left). The observation distance was 4 mm.

Fig. 5
Fig. 5

From top to bottom, the image reconstructed at d − 0.15 mm, d, and d + 0.15 mm, respectively. These images illustrate the capability of our system to restore three-dimensional information by focusing the reconstructed image with a precision of less than 0.15 mm for an observation distance of d = 4 mm.

Fig. 6
Fig. 6

Simulated (dashed curve) and experimental (squares) AMTF at 4-mm distance.

Fig. 7
Fig. 7

Cutoff frequency versus observation distance, calculated by simulation (dashed curve) and derived experimentally (diamonds).

Fig. 8
Fig. 8

Plot of the cutoff frequency as a function of observation distance, showing the effect of sampling the hologram on the MCF (squares) and the limitation caused by the aperture only (dashed curve).

Fig. 9
Fig. 9

Plot of the simulated AMTF’s for different observation distances (z ≤ 2 mm), showing a decrease of the AMTF level for frequencies below cutoff caused by nonoptimal fringe sampling by the MCF.

Fig. 10
Fig. 10

Images showing a uniform coherent signal transmitted through stable (top) and vibrated MCF (bottom).

Tables (1)

Tables Icon

Table 1 Noise Statistics: Coefficient of Variation (Ratio of Variance σ to Signal Mean μ) for the Hologram and Reconstructed Image

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I H = H 2 = O + R 2 = O 2 + R 2 + O * R + O R * ,
O ( x , y ) = A object U o ( x o , y o ) × exp { i k 2 z o [ ( x o - x ) 2 + ( y o - y ) 2 ] } d x o d y o .
ch ( x , y ) = 1 z exp [ i k ( x 2 + y 2 ) 2 z ] .
AMTF = A max - A min A max + A min ,

Metrics