Abstract

We have assembled an aerosol-fluorescence spectrum analyzer (AFS), which can measure the fluorescence spectra and elastic scattering of airborne particles as they flow through a laser beam. The aerosols traverse a scattering cell where they are illuminated with intense (50 kW/cm2) light inside the cavity of an argon-ion laser operating at 488 nm. This AFS can obtain fluorescence spectra of individual dye-doped polystyrene microspheres as small as 0.5 μm in diameter. The spectra obtained from microspheres doped with pink and green-yellow dyes are clearly different. We have also detected the fluorescence spectra of airborne particles (although not single particles) made from various biological materials, e.g., Bacillus subtilis spores, B. anthrasis spores, riboflavin, and tree leaves. The AFS may be useful in detecting and characterizing airborne bacteria and other airborne particles of biological origin.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. D. Brock, M. T. Madigan, Biology of Microorganisms, 5th ed. (Prentice-Hall, New Jersey, 1986).
  2. B. D. Davis, R. Dulbecco, H. N. Eisen, H. S. Ginsberg, Microbiology Including Immunology and Molecular Genetics, 3rd ed. (Harper & Row, Hagerstown, Md., 1980).
  3. T. C. Eikhoff, “Perspectives on airborne infections in health care facilities,” in Proceedings of the Workshop on Engineering Controls for Preventing Airborne Infections in Workers in Health Care and Related Facilities, P. J. Bierbaum, M. Lippmann, eds. (Department of Health and Human Services, Cincinnati, Oh., 1994), pp. 15–34.
  4. E. C. Cole, “Aerosol characterization,” in Proceedings of the Workshop on Engineering Controls for Preventing Airborne Infections in Workers in Health Care and Related Facilities,” P. J. Bierbaum, M. Lippmann, eds. (Department of Health and Human Services, Cincinnati, Oh., 1994), pp. 51–72.
  5. Stockholm International Peace Research Institute, The Problem of Chemical and Biological Weapons, Vol. 1, The Rise of CB Weapons (Almqvist & Wiksells, Stockholm, 1971), pp. 111–124.
  6. U.S. Congress, Office of Technology Assessment, Technologies Underlying Weapons of Mass Destruction, OTA-BP-ISC-115 (U.S. GPO, Washington, D.C., 1993), pp. 71–117.
  7. E. O. Wilson, The Diversity of Life (Belknap-Harvard, Cambridge, Mass., 1992), pp. 141–145.
  8. M. J. Sorrell, J. Tribble, L. Reinisch, “Bacteria identification of otitis media with fluorescence spectrocopy,” Lasers Surgery Med. 14, 155–163 (1994).
    [CrossRef]
  9. J. A. Werkhaven, L. Reinisch, M. J. Sorrell, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
    [CrossRef] [PubMed]
  10. R. A. Dalterio, W. H. Nelson, D. Britt, J. F. Sperry, D. Psaras, J. F. Tanguay, S. L. Suib, “Steady-state and decay characteristics of protein tryptophan fluorescence from bacteria,” Appl. Spectrosc. 40, 86–90 (1986).
    [CrossRef]
  11. R. A. Dalterio, W. H. Nelson, D. Britt, J. F. Sperry, J. F. Tanguay, S. L. Suib, “The steady-state and decay characteristics of primary fluorescence from live bacteria,” Appl. Spectrosc. 41, 234–241 (1987).
    [CrossRef]
  12. M. Baek, W. H. Nelson, P. E. Hargraves, J. F. Tanguay, S. L. Suib, “The steady-state and decay characteristics of protein tryptophan fluorescence from algae,” Appl. Spectrosc. 42, 1405–1412 (1988).
    [CrossRef]
  13. B. V. Bronk, L. Reinisch, “Variability of steady-state bacterial fluorescence with respect to growth conditions,” Appl. Spectrosc. 47, 436–440 (1993).
    [CrossRef]
  14. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
    [CrossRef]
  15. D. M. Garvey, R. G. Pinnick, “Response characteristics of the Particle Measurement Systems active scattering aerosol spectrometer probe (ASASP-X),” Aerosol Sci. Technol. 2, 477–488 (1983).
    [CrossRef]
  16. W. W. Szymanski, B. Y. H. Liu, “On the sizing accuracy of laser optical particle counters,” Part. Charact. 3, 1–7 (1986).
    [CrossRef]
  17. W. C. Hinds, G. Kraske, “Performance of PMS Model LAS-X optical particle counter,” J. Aerosol Sci. 17, 67–72 (1986).
    [CrossRef]
  18. E. Hirst, P. H. Kaye, J. R. Guppy, “Light scattering from nonspherical airborne particles: experimental and theoretical comparisons,” Appl. Opt. 33, 7180–7186 (1994).
    [CrossRef] [PubMed]
  19. J. Ho, G. Fisher, “Detection of BW agents: flow cytometry measurement of Bacillus subtilis (BG) spore fluorescence,” Suffield Memorandum No. 1421 (Defense Research Establishment, Suffield, Medicine Hat, Alberta, Canada, 1993).
  20. J. Knollenberg, Particle Measuring Systems, Inc., Boulder, Colo. 80301 (personal communication with R. G. Pinnick, 1993).
  21. J. E. Aubin, “Autofluorescence of viable cultured mammalian cells,” J. Histochem. Cytochem. 27, 26–43 (1979).
    [CrossRef]
  22. R. C. Brown, R. C. Benson, R. A. Myer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence: is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
    [CrossRef]
  23. P. Setlow, “Germination and outgrowth,” in The Bacterial Spore, A. Hurst, G. W. Gould, eds. (Academic, London, 1983), p. 214.
  24. J. B. Perkins, J. G. Pero, “Biosynthesis of riboflavin, biotin, folic acid and cobalamin,” in Bacillus Subtilis and Other Gram Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics, A. L. Sonensheim, J. A. Hoch, R. Losick, eds. (American Society for Microbiology, Washington, D.C., 1993), pp. 319–334.
  25. P. Chylek, “Partial wave resonances and the ripple structure in the Mie normalized extinction cross section,” J. Opt. Soc. Am. 66, 285–287 (1976).
    [CrossRef]
  26. S. C. Hill, R. E. Benner, “Morphology dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.
  27. R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
    [CrossRef]
  28. S. C. Hill, R. E. Benner, C. K. Rushforth, P. R. Conwell, “Structural resonances observed in the fluorescence emission from small spheres on substrates,” Appl. Opt. 23, 1680–1683 (1984).
    [CrossRef] [PubMed]
  29. P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), pp. 188–218.
  30. L. A. Mattieson, J. L. Saunderson, “Optical and electrical properties of polystyrenes,” in Styrene: its Polymers, Copolymers and Derivatives, R. H. Boundy, R. F. Boyer, S. M. Stoesser, eds. (Reinhold, New York, 1953), p. 524.
  31. M. D. Barnes, W. B. Whitten, S. Arnold, J. M. Ramsey, “Homogeneous linewidths of Rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992).
    [CrossRef]
  32. H.-B. Lin, J. D. Eversole, C. D. Merrit, A. J. Campillo, “Cavity-modified spontaneous emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992).
    [CrossRef] [PubMed]
  33. M. D. Barnes, W. B. Whitten, J. M. Ramsey, “Enhanced fluorescence yields through cavity quantum-electrodynamic effects in microdroplets,” J. Opt. Soc. Am. 11, 1297–1304 (1994).
    [CrossRef]
  34. Both samples were supplied to us by John Bruno, U.S. Air Force Armstrong Laboratory, Edgewood Research Development and Engineering Center, Aberdeen Proving Ground, Md.
  35. R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. (to be published).

1994 (4)

M. J. Sorrell, J. Tribble, L. Reinisch, “Bacteria identification of otitis media with fluorescence spectrocopy,” Lasers Surgery Med. 14, 155–163 (1994).
[CrossRef]

J. A. Werkhaven, L. Reinisch, M. J. Sorrell, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
[CrossRef] [PubMed]

E. Hirst, P. H. Kaye, J. R. Guppy, “Light scattering from nonspherical airborne particles: experimental and theoretical comparisons,” Appl. Opt. 33, 7180–7186 (1994).
[CrossRef] [PubMed]

M. D. Barnes, W. B. Whitten, J. M. Ramsey, “Enhanced fluorescence yields through cavity quantum-electrodynamic effects in microdroplets,” J. Opt. Soc. Am. 11, 1297–1304 (1994).
[CrossRef]

1993 (1)

1992 (2)

M. D. Barnes, W. B. Whitten, S. Arnold, J. M. Ramsey, “Homogeneous linewidths of Rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992).
[CrossRef]

H.-B. Lin, J. D. Eversole, C. D. Merrit, A. J. Campillo, “Cavity-modified spontaneous emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992).
[CrossRef] [PubMed]

1988 (1)

1987 (1)

1986 (3)

R. A. Dalterio, W. H. Nelson, D. Britt, J. F. Sperry, D. Psaras, J. F. Tanguay, S. L. Suib, “Steady-state and decay characteristics of protein tryptophan fluorescence from bacteria,” Appl. Spectrosc. 40, 86–90 (1986).
[CrossRef]

W. W. Szymanski, B. Y. H. Liu, “On the sizing accuracy of laser optical particle counters,” Part. Charact. 3, 1–7 (1986).
[CrossRef]

W. C. Hinds, G. Kraske, “Performance of PMS Model LAS-X optical particle counter,” J. Aerosol Sci. 17, 67–72 (1986).
[CrossRef]

1984 (1)

1983 (1)

D. M. Garvey, R. G. Pinnick, “Response characteristics of the Particle Measurement Systems active scattering aerosol spectrometer probe (ASASP-X),” Aerosol Sci. Technol. 2, 477–488 (1983).
[CrossRef]

1980 (1)

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

1979 (2)

J. E. Aubin, “Autofluorescence of viable cultured mammalian cells,” J. Histochem. Cytochem. 27, 26–43 (1979).
[CrossRef]

R. C. Brown, R. C. Benson, R. A. Myer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence: is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
[CrossRef]

1976 (1)

Arnold, S.

M. D. Barnes, W. B. Whitten, S. Arnold, J. M. Ramsey, “Homogeneous linewidths of Rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992).
[CrossRef]

Aubin, J. E.

J. E. Aubin, “Autofluorescence of viable cultured mammalian cells,” J. Histochem. Cytochem. 27, 26–43 (1979).
[CrossRef]

Baek, M.

Barber, P. W.

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), pp. 188–218.

Barnes, M. D.

M. D. Barnes, W. B. Whitten, J. M. Ramsey, “Enhanced fluorescence yields through cavity quantum-electrodynamic effects in microdroplets,” J. Opt. Soc. Am. 11, 1297–1304 (1994).
[CrossRef]

M. D. Barnes, W. B. Whitten, S. Arnold, J. M. Ramsey, “Homogeneous linewidths of Rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992).
[CrossRef]

Benner, R. E.

S. C. Hill, R. E. Benner, C. K. Rushforth, P. R. Conwell, “Structural resonances observed in the fluorescence emission from small spheres on substrates,” Appl. Opt. 23, 1680–1683 (1984).
[CrossRef] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

S. C. Hill, R. E. Benner, “Morphology dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.

Benson, R. C.

R. C. Brown, R. C. Benson, R. A. Myer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence: is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
[CrossRef]

Britt, D.

Brock, T. D.

T. D. Brock, M. T. Madigan, Biology of Microorganisms, 5th ed. (Prentice-Hall, New Jersey, 1986).

Bronk, B. V.

Brown, R. C.

R. C. Brown, R. C. Benson, R. A. Myer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence: is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
[CrossRef]

Bruno, J. G.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. (to be published).

Campillo, A. J.

H.-B. Lin, J. D. Eversole, C. D. Merrit, A. J. Campillo, “Cavity-modified spontaneous emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992).
[CrossRef] [PubMed]

Chang, R. K.

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Chylek, P.

Cole, E. C.

E. C. Cole, “Aerosol characterization,” in Proceedings of the Workshop on Engineering Controls for Preventing Airborne Infections in Workers in Health Care and Related Facilities,” P. J. Bierbaum, M. Lippmann, eds. (Department of Health and Human Services, Cincinnati, Oh., 1994), pp. 51–72.

Conwell, P. R.

Dalterio, R. A.

Davis, B. D.

B. D. Davis, R. Dulbecco, H. N. Eisen, H. S. Ginsberg, Microbiology Including Immunology and Molecular Genetics, 3rd ed. (Harper & Row, Hagerstown, Md., 1980).

Dulbecco, R.

B. D. Davis, R. Dulbecco, H. N. Eisen, H. S. Ginsberg, Microbiology Including Immunology and Molecular Genetics, 3rd ed. (Harper & Row, Hagerstown, Md., 1980).

Eikhoff, T. C.

T. C. Eikhoff, “Perspectives on airborne infections in health care facilities,” in Proceedings of the Workshop on Engineering Controls for Preventing Airborne Infections in Workers in Health Care and Related Facilities, P. J. Bierbaum, M. Lippmann, eds. (Department of Health and Human Services, Cincinnati, Oh., 1994), pp. 15–34.

Eisen, H. N.

B. D. Davis, R. Dulbecco, H. N. Eisen, H. S. Ginsberg, Microbiology Including Immunology and Molecular Genetics, 3rd ed. (Harper & Row, Hagerstown, Md., 1980).

Eversole, J. D.

H.-B. Lin, J. D. Eversole, C. D. Merrit, A. J. Campillo, “Cavity-modified spontaneous emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992).
[CrossRef] [PubMed]

Fernandez, G. L.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. (to be published).

Fisher, G.

J. Ho, G. Fisher, “Detection of BW agents: flow cytometry measurement of Bacillus subtilis (BG) spore fluorescence,” Suffield Memorandum No. 1421 (Defense Research Establishment, Suffield, Medicine Hat, Alberta, Canada, 1993).

Garvey, D. M.

D. M. Garvey, R. G. Pinnick, “Response characteristics of the Particle Measurement Systems active scattering aerosol spectrometer probe (ASASP-X),” Aerosol Sci. Technol. 2, 477–488 (1983).
[CrossRef]

Ginsberg, H. S.

B. D. Davis, R. Dulbecco, H. N. Eisen, H. S. Ginsberg, Microbiology Including Immunology and Molecular Genetics, 3rd ed. (Harper & Row, Hagerstown, Md., 1980).

Guppy, J. R.

Hargraves, P. E.

Hill, S. C.

S. C. Hill, R. E. Benner, C. K. Rushforth, P. R. Conwell, “Structural resonances observed in the fluorescence emission from small spheres on substrates,” Appl. Opt. 23, 1680–1683 (1984).
[CrossRef] [PubMed]

S. C. Hill, R. E. Benner, “Morphology dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. (to be published).

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), pp. 188–218.

Hinds, W. C.

W. C. Hinds, G. Kraske, “Performance of PMS Model LAS-X optical particle counter,” J. Aerosol Sci. 17, 67–72 (1986).
[CrossRef]

Hirst, E.

Ho, J.

J. Ho, G. Fisher, “Detection of BW agents: flow cytometry measurement of Bacillus subtilis (BG) spore fluorescence,” Suffield Memorandum No. 1421 (Defense Research Establishment, Suffield, Medicine Hat, Alberta, Canada, 1993).

Kaye, P. H.

Knollenberg, J.

J. Knollenberg, Particle Measuring Systems, Inc., Boulder, Colo. 80301 (personal communication with R. G. Pinnick, 1993).

Kraske, G.

W. C. Hinds, G. Kraske, “Performance of PMS Model LAS-X optical particle counter,” J. Aerosol Sci. 17, 67–72 (1986).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
[CrossRef]

Lin, H.-B.

H.-B. Lin, J. D. Eversole, C. D. Merrit, A. J. Campillo, “Cavity-modified spontaneous emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992).
[CrossRef] [PubMed]

Liu, B. Y. H.

W. W. Szymanski, B. Y. H. Liu, “On the sizing accuracy of laser optical particle counters,” Part. Charact. 3, 1–7 (1986).
[CrossRef]

Madigan, M. T.

T. D. Brock, M. T. Madigan, Biology of Microorganisms, 5th ed. (Prentice-Hall, New Jersey, 1986).

Mattieson, L. A.

L. A. Mattieson, J. L. Saunderson, “Optical and electrical properties of polystyrenes,” in Styrene: its Polymers, Copolymers and Derivatives, R. H. Boundy, R. F. Boyer, S. M. Stoesser, eds. (Reinhold, New York, 1953), p. 524.

Mayo, M. W.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. (to be published).

McKhann, G. M.

R. C. Brown, R. C. Benson, R. A. Myer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence: is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
[CrossRef]

Merrit, C. D.

H.-B. Lin, J. D. Eversole, C. D. Merrit, A. J. Campillo, “Cavity-modified spontaneous emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992).
[CrossRef] [PubMed]

Myer, R. A.

R. C. Brown, R. C. Benson, R. A. Myer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence: is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
[CrossRef]

Nachman, P.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. (to be published).

Nelson, W. H.

Ossoff, R. H.

J. A. Werkhaven, L. Reinisch, M. J. Sorrell, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
[CrossRef] [PubMed]

Owen, J. F.

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Pendleton, J. D.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. (to be published).

Perkins, J. B.

J. B. Perkins, J. G. Pero, “Biosynthesis of riboflavin, biotin, folic acid and cobalamin,” in Bacillus Subtilis and Other Gram Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics, A. L. Sonensheim, J. A. Hoch, R. Losick, eds. (American Society for Microbiology, Washington, D.C., 1993), pp. 319–334.

Pero, J. G.

J. B. Perkins, J. G. Pero, “Biosynthesis of riboflavin, biotin, folic acid and cobalamin,” in Bacillus Subtilis and Other Gram Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics, A. L. Sonensheim, J. A. Hoch, R. Losick, eds. (American Society for Microbiology, Washington, D.C., 1993), pp. 319–334.

Pinnick, R. G.

D. M. Garvey, R. G. Pinnick, “Response characteristics of the Particle Measurement Systems active scattering aerosol spectrometer probe (ASASP-X),” Aerosol Sci. Technol. 2, 477–488 (1983).
[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. (to be published).

Psaras, D.

Ramsey, J. M.

M. D. Barnes, W. B. Whitten, J. M. Ramsey, “Enhanced fluorescence yields through cavity quantum-electrodynamic effects in microdroplets,” J. Opt. Soc. Am. 11, 1297–1304 (1994).
[CrossRef]

M. D. Barnes, W. B. Whitten, S. Arnold, J. M. Ramsey, “Homogeneous linewidths of Rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992).
[CrossRef]

Reinisch, L.

J. A. Werkhaven, L. Reinisch, M. J. Sorrell, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
[CrossRef] [PubMed]

M. J. Sorrell, J. Tribble, L. Reinisch, “Bacteria identification of otitis media with fluorescence spectrocopy,” Lasers Surgery Med. 14, 155–163 (1994).
[CrossRef]

B. V. Bronk, L. Reinisch, “Variability of steady-state bacterial fluorescence with respect to growth conditions,” Appl. Spectrosc. 47, 436–440 (1993).
[CrossRef]

Rushforth, C. K.

Saunderson, J. L.

L. A. Mattieson, J. L. Saunderson, “Optical and electrical properties of polystyrenes,” in Styrene: its Polymers, Copolymers and Derivatives, R. H. Boundy, R. F. Boyer, S. M. Stoesser, eds. (Reinhold, New York, 1953), p. 524.

Setlow, P.

P. Setlow, “Germination and outgrowth,” in The Bacterial Spore, A. Hurst, G. W. Gould, eds. (Academic, London, 1983), p. 214.

Sorrell, M. J.

M. J. Sorrell, J. Tribble, L. Reinisch, “Bacteria identification of otitis media with fluorescence spectrocopy,” Lasers Surgery Med. 14, 155–163 (1994).
[CrossRef]

J. A. Werkhaven, L. Reinisch, M. J. Sorrell, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
[CrossRef] [PubMed]

Sperry, J. F.

Suib, S. L.

Szymanski, W. W.

W. W. Szymanski, B. Y. H. Liu, “On the sizing accuracy of laser optical particle counters,” Part. Charact. 3, 1–7 (1986).
[CrossRef]

Tanguay, J. F.

Tribble, J.

J. A. Werkhaven, L. Reinisch, M. J. Sorrell, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
[CrossRef] [PubMed]

M. J. Sorrell, J. Tribble, L. Reinisch, “Bacteria identification of otitis media with fluorescence spectrocopy,” Lasers Surgery Med. 14, 155–163 (1994).
[CrossRef]

Werkhaven, J. A.

J. A. Werkhaven, L. Reinisch, M. J. Sorrell, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
[CrossRef] [PubMed]

Whitten, W. B.

M. D. Barnes, W. B. Whitten, J. M. Ramsey, “Enhanced fluorescence yields through cavity quantum-electrodynamic effects in microdroplets,” J. Opt. Soc. Am. 11, 1297–1304 (1994).
[CrossRef]

M. D. Barnes, W. B. Whitten, S. Arnold, J. M. Ramsey, “Homogeneous linewidths of Rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992).
[CrossRef]

Wilson, E. O.

E. O. Wilson, The Diversity of Life (Belknap-Harvard, Cambridge, Mass., 1992), pp. 141–145.

Zaruba, M. E.

R. C. Brown, R. C. Benson, R. A. Myer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence: is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
[CrossRef]

Aerosol Sci. Technol. (1)

D. M. Garvey, R. G. Pinnick, “Response characteristics of the Particle Measurement Systems active scattering aerosol spectrometer probe (ASASP-X),” Aerosol Sci. Technol. 2, 477–488 (1983).
[CrossRef]

Appl. Opt. (2)

Appl. Spectrosc. (4)

J. Aerosol Sci. (1)

W. C. Hinds, G. Kraske, “Performance of PMS Model LAS-X optical particle counter,” J. Aerosol Sci. 17, 67–72 (1986).
[CrossRef]

J. Chem. Phys. (1)

M. D. Barnes, W. B. Whitten, S. Arnold, J. M. Ramsey, “Homogeneous linewidths of Rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992).
[CrossRef]

J. Histochem. Cytochem. (2)

J. E. Aubin, “Autofluorescence of viable cultured mammalian cells,” J. Histochem. Cytochem. 27, 26–43 (1979).
[CrossRef]

R. C. Brown, R. C. Benson, R. A. Myer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence: is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
[CrossRef]

J. Opt. Soc. Am. (2)

M. D. Barnes, W. B. Whitten, J. M. Ramsey, “Enhanced fluorescence yields through cavity quantum-electrodynamic effects in microdroplets,” J. Opt. Soc. Am. 11, 1297–1304 (1994).
[CrossRef]

P. Chylek, “Partial wave resonances and the ripple structure in the Mie normalized extinction cross section,” J. Opt. Soc. Am. 66, 285–287 (1976).
[CrossRef]

Laryngoscope (1)

J. A. Werkhaven, L. Reinisch, M. J. Sorrell, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
[CrossRef] [PubMed]

Lasers Surgery Med. (1)

M. J. Sorrell, J. Tribble, L. Reinisch, “Bacteria identification of otitis media with fluorescence spectrocopy,” Lasers Surgery Med. 14, 155–163 (1994).
[CrossRef]

Part. Charact. (1)

W. W. Szymanski, B. Y. H. Liu, “On the sizing accuracy of laser optical particle counters,” Part. Charact. 3, 1–7 (1986).
[CrossRef]

Phys. Rev. A (1)

H.-B. Lin, J. D. Eversole, C. D. Merrit, A. J. Campillo, “Cavity-modified spontaneous emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Other (17)

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), pp. 188–218.

L. A. Mattieson, J. L. Saunderson, “Optical and electrical properties of polystyrenes,” in Styrene: its Polymers, Copolymers and Derivatives, R. H. Boundy, R. F. Boyer, S. M. Stoesser, eds. (Reinhold, New York, 1953), p. 524.

S. C. Hill, R. E. Benner, “Morphology dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.

J. Ho, G. Fisher, “Detection of BW agents: flow cytometry measurement of Bacillus subtilis (BG) spore fluorescence,” Suffield Memorandum No. 1421 (Defense Research Establishment, Suffield, Medicine Hat, Alberta, Canada, 1993).

J. Knollenberg, Particle Measuring Systems, Inc., Boulder, Colo. 80301 (personal communication with R. G. Pinnick, 1993).

Both samples were supplied to us by John Bruno, U.S. Air Force Armstrong Laboratory, Edgewood Research Development and Engineering Center, Aberdeen Proving Ground, Md.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. (to be published).

P. Setlow, “Germination and outgrowth,” in The Bacterial Spore, A. Hurst, G. W. Gould, eds. (Academic, London, 1983), p. 214.

J. B. Perkins, J. G. Pero, “Biosynthesis of riboflavin, biotin, folic acid and cobalamin,” in Bacillus Subtilis and Other Gram Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics, A. L. Sonensheim, J. A. Hoch, R. Losick, eds. (American Society for Microbiology, Washington, D.C., 1993), pp. 319–334.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
[CrossRef]

T. D. Brock, M. T. Madigan, Biology of Microorganisms, 5th ed. (Prentice-Hall, New Jersey, 1986).

B. D. Davis, R. Dulbecco, H. N. Eisen, H. S. Ginsberg, Microbiology Including Immunology and Molecular Genetics, 3rd ed. (Harper & Row, Hagerstown, Md., 1980).

T. C. Eikhoff, “Perspectives on airborne infections in health care facilities,” in Proceedings of the Workshop on Engineering Controls for Preventing Airborne Infections in Workers in Health Care and Related Facilities, P. J. Bierbaum, M. Lippmann, eds. (Department of Health and Human Services, Cincinnati, Oh., 1994), pp. 15–34.

E. C. Cole, “Aerosol characterization,” in Proceedings of the Workshop on Engineering Controls for Preventing Airborne Infections in Workers in Health Care and Related Facilities,” P. J. Bierbaum, M. Lippmann, eds. (Department of Health and Human Services, Cincinnati, Oh., 1994), pp. 51–72.

Stockholm International Peace Research Institute, The Problem of Chemical and Biological Weapons, Vol. 1, The Rise of CB Weapons (Almqvist & Wiksells, Stockholm, 1971), pp. 111–124.

U.S. Congress, Office of Technology Assessment, Technologies Underlying Weapons of Mass Destruction, OTA-BP-ISC-115 (U.S. GPO, Washington, D.C., 1993), pp. 71–117.

E. O. Wilson, The Diversity of Life (Belknap-Harvard, Cambridge, Mass., 1992), pp. 141–145.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scattering cell of the aerosol-fluorescence spectrum analyzer (AFS). Because the cell is inside the argon-ion laser cavity, the illumination beam propagates in both directions.

Fig. 2
Fig. 2

Simplified system schematic of the AFS.

Fig. 3
Fig. 3

Fluorescence spectra of individual, dye-doped polystyrene aerosol particles obtained as they flowed through the 488-nm illuminating beam inside the AFS. Each spectrum was obtained with the mechanical shutter open for 10 ms. The particles, initially in water, were generated with a Royco aerosolizer. The particle rate was chosen to be low enough that most spectra had either no fluorescent particles or only one fluorescent particle. The particles were illuminated with intense (~50 kW/cm2) 488-nm light. Only the spectrum of the green-yellow particle (4.5-μm diameter) does not have the background subtracted. The background that was subtracted from the other spectra was ~900 cts (counts). The sharp peaks in the spectra of the larger particles are associated with size-dependent resonances.

Fig. 4
Fig. 4

Sequence of 101 separate exposures of the CCD. Fluorescence spectra of individual, dye-doped polystyrene aerosol particles obtained as they flowed through the AFS are shown. Suspensions of pink (2.87-μm-diameter) and green-yellow (4.5-μm-diameter) dye-doped polystyrene particles were mixed in water, aerosolized, and sampled with the ARS. The concentration of the mixed particles and the particle rate were chosen to be low enough that most spectra corresponded to either one fluorescent sphere or no sphere (i.e., background). The leakage of the incident laser radiation appears on the left edge of each spectrum.

Fig. 5
Fig. 5

Fluorescence spectra of several types of particles made from biological materials. The riboflavin particles were made by dissolving riboflavin in water, and then aerosolizing. The oleander leaves were mixed with water and pulverized with a mortar and pestle, and the supernatant was aerosolized; the chlorophyll emission peak near 685 nm is prominent. The Raman line of atmospheric nitrogen (at 551 nm) is detectable and serves as a convenient wavelength marker. The exposure time was 10 ms.

Fig. 6
Fig. 6

Fluorescence spectra of bacterial particles [Bacillus subtilis (subspecies niger) and Bacillus anthracis (Sterne strain)], of riboflavin particles, and of leaf particles as they flow through the AFS. For each particle type, five consecutive spectra are shown. For the spectrum of Bacillus subtilis the exposure time was 500 ms. For all the other spectra, the exposure was 10 ms.

Metrics