Abstract

A recently developed laser-induced incandescence technique is used to make novel planar measurements of soot volume fraction within turbulent diffusion flames and droplet flames. The two-dimensional imaging technique is developed and assessed by systematic experiments in a coannular laminar diffusion flame, in which the soot characteristics have been well established. With a single point calibration procedure, agreement to within 10% was found between the values of soot volume fraction measured by this technique and those determined by conventional laser scattering–extinction methods in the flame. As a demonstration of the wide range of applicability of the technique, soot volume fraction images are also obtained from both turbulent ethene diffusion flames and from a freely falling droplet flame that burns the mixture of 75% benzene and 25% methanol. For the turbulent diffusion flames, approximately an 80% reduction in soot volume fraction was found when the Reynolds number of the fuel jet increased from 4000 to 8000. In the droplet flame case, the distribution of soot field was found to be similar to that observed in coannular laminar diffusion flames.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially-resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
    [CrossRef]
  2. T. Ni, S. B. Gupta, R. J. Santoro, “Suppression of soot formation in ethene laminar diffusion flames by chemical additives,” in Twenty-Fifth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1994), pp. 585–592.
    [CrossRef]
  3. N. P. Tait, D. A. Greenhalgh, “2D soot field measurements by laser induced incandescence,” in the Proceedings of the Optical Methods and Data Processing In Heat Transfer and Fluid Flow Conference (Institution of Mechanical Engineers, London, 1992), pp. 185–193.
  4. J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D.I. diesel engine using 2-D laser-induced incandescence imaging,” Vol. SAE-910224 of the SAE Technical Papers Series (Society of Automotive Engineers, Warrendale, Pa., 1991).
  5. J. E. Dec, “Soot distribution in a D. I. diesel engine using 2-D imaging of laser-induced incandescence, elastic scattering, and flame luminosity,” Vol. SAE-920115 of the SAE Technical Papers Series (Society of Automotive Engineers, Warrendale, Pa., 1992).
  6. L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984).
    [CrossRef] [PubMed]
  7. P.-E. Bengtsson, M. Aldén, “Soot visualization strategies using laser techniques: laser-induced fluorescence in C2 from laser-vaporized soot, and laser-induced soot incandescence,” Appl. Phys. B 60, 51–59 (1995).
    [CrossRef]
  8. C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
    [CrossRef]
  9. R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
    [CrossRef]
  10. R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987).
    [CrossRef]
  11. A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
    [CrossRef]
  12. C. J. Dasch, “Continuous-wave probe laser vaporization of small soot particles in a flame,” Appl. Opt. 23, 2209–2215 (1984).
    [CrossRef] [PubMed]
  13. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
    [CrossRef]
  14. B. F. Magnussen, “An investigation into the behavior of soot in a turbulent free jet C2H2-flame,” in the Proceedings of the Fifteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1975), pp. 1415–1425.
    [CrossRef]
  15. J. P. Gore, G. M. Faeth, “Structure and spectral radiation properties of turbulent acetylene/air diffusion flames,” J. Heat Transfer 110, 173–181 (1988).
    [CrossRef]
  16. R. C. Miake-Lye, S. J. Toner, “Laser soot-scattering imaging of a large buoyant diffusion flame,” Combust. Flame 67, 9–26 (1987).
    [CrossRef]
  17. J. H. Kent, S. J. Bastin, “Parametric effects on sooting in turbulent acetylene diffusion flames,” Combust. Flame 56, 29–42 (1984).
    [CrossRef]

1995 (1)

P.-E. Bengtsson, M. Aldén, “Soot visualization strategies using laser techniques: laser-induced fluorescence in C2 from laser-vaporized soot, and laser-induced soot incandescence,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

1994 (3)

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially-resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

1988 (1)

J. P. Gore, G. M. Faeth, “Structure and spectral radiation properties of turbulent acetylene/air diffusion flames,” J. Heat Transfer 110, 173–181 (1988).
[CrossRef]

1987 (2)

R. C. Miake-Lye, S. J. Toner, “Laser soot-scattering imaging of a large buoyant diffusion flame,” Combust. Flame 67, 9–26 (1987).
[CrossRef]

R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987).
[CrossRef]

1984 (3)

J. H. Kent, S. J. Bastin, “Parametric effects on sooting in turbulent acetylene diffusion flames,” Combust. Flame 56, 29–42 (1984).
[CrossRef]

L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984).
[CrossRef] [PubMed]

C. J. Dasch, “Continuous-wave probe laser vaporization of small soot particles in a flame,” Appl. Opt. 23, 2209–2215 (1984).
[CrossRef] [PubMed]

1983 (1)

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

1977 (1)

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

Aldén, M.

P.-E. Bengtsson, M. Aldén, “Soot visualization strategies using laser techniques: laser-induced fluorescence in C2 from laser-vaporized soot, and laser-induced soot incandescence,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

Bastin, S. J.

J. H. Kent, S. J. Bastin, “Parametric effects on sooting in turbulent acetylene diffusion flames,” Combust. Flame 56, 29–42 (1984).
[CrossRef]

Bengtsson, P.-E.

P.-E. Bengtsson, M. Aldén, “Soot visualization strategies using laser techniques: laser-induced fluorescence in C2 from laser-vaporized soot, and laser-induced soot incandescence,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

Dasch, C. J.

C. J. Dasch, “Continuous-wave probe laser vaporization of small soot particles in a flame,” Appl. Opt. 23, 2209–2215 (1984).
[CrossRef] [PubMed]

Dec, J. E.

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D.I. diesel engine using 2-D laser-induced incandescence imaging,” Vol. SAE-910224 of the SAE Technical Papers Series (Society of Automotive Engineers, Warrendale, Pa., 1991).

J. E. Dec, “Soot distribution in a D. I. diesel engine using 2-D imaging of laser-induced incandescence, elastic scattering, and flame luminosity,” Vol. SAE-920115 of the SAE Technical Papers Series (Society of Automotive Engineers, Warrendale, Pa., 1992).

Dobbins, R. A.

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

Faeth, G. M.

J. P. Gore, G. M. Faeth, “Structure and spectral radiation properties of turbulent acetylene/air diffusion flames,” J. Heat Transfer 110, 173–181 (1988).
[CrossRef]

Gore, J. P.

J. P. Gore, G. M. Faeth, “Structure and spectral radiation properties of turbulent acetylene/air diffusion flames,” J. Heat Transfer 110, 173–181 (1988).
[CrossRef]

Greenhalgh, D. A.

N. P. Tait, D. A. Greenhalgh, “2D soot field measurements by laser induced incandescence,” in the Proceedings of the Optical Methods and Data Processing In Heat Transfer and Fluid Flow Conference (Institution of Mechanical Engineers, London, 1992), pp. 185–193.

Gupta, S. B.

T. Ni, S. B. Gupta, R. J. Santoro, “Suppression of soot formation in ethene laminar diffusion flames by chemical additives,” in Twenty-Fifth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1994), pp. 585–592.
[CrossRef]

Harrington, J. E.

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Horvath, J. J.

R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987).
[CrossRef]

Kent, J. H.

J. H. Kent, S. J. Bastin, “Parametric effects on sooting in turbulent acetylene diffusion flames,” Combust. Flame 56, 29–42 (1984).
[CrossRef]

Lee, T.-W.

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially-resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Magnussen, B. F.

B. F. Magnussen, “An investigation into the behavior of soot in a turbulent free jet C2H2-flame,” in the Proceedings of the Fifteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1975), pp. 1415–1425.
[CrossRef]

Melton, L. A.

Miake-Lye, R. C.

R. C. Miake-Lye, S. J. Toner, “Laser soot-scattering imaging of a large buoyant diffusion flame,” Combust. Flame 67, 9–26 (1987).
[CrossRef]

Ni, T.

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially-resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

T. Ni, S. B. Gupta, R. J. Santoro, “Suppression of soot formation in ethene laminar diffusion flames by chemical additives,” in Twenty-Fifth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1994), pp. 585–592.
[CrossRef]

Quay, B.

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially-resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Santoro, R. J.

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially-resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

T. Ni, S. B. Gupta, R. J. Santoro, “Suppression of soot formation in ethene laminar diffusion flames by chemical additives,” in Twenty-Fifth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1994), pp. 585–592.
[CrossRef]

Semerjian, H. G.

R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

Shaddix, C. R.

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Siebers, D. L.

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D.I. diesel engine using 2-D laser-induced incandescence imaging,” Vol. SAE-910224 of the SAE Technical Papers Series (Society of Automotive Engineers, Warrendale, Pa., 1991).

Smyth, K. C.

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Tait, N. P.

N. P. Tait, D. A. Greenhalgh, “2D soot field measurements by laser induced incandescence,” in the Proceedings of the Optical Methods and Data Processing In Heat Transfer and Fluid Flow Conference (Institution of Mechanical Engineers, London, 1992), pp. 185–193.

Toner, S. J.

R. C. Miake-Lye, S. J. Toner, “Laser soot-scattering imaging of a large buoyant diffusion flame,” Combust. Flame 67, 9–26 (1987).
[CrossRef]

Vander Wal, R. L.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Weiland, K. J.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Yeh, T. T.

R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987).
[CrossRef]

zur Loye, A. O.

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D.I. diesel engine using 2-D laser-induced incandescence imaging,” Vol. SAE-910224 of the SAE Technical Papers Series (Society of Automotive Engineers, Warrendale, Pa., 1991).

Appl. Opt. (1)

C. J. Dasch, “Continuous-wave probe laser vaporization of small soot particles in a flame,” Appl. Opt. 23, 2209–2215 (1984).
[CrossRef] [PubMed]

Appl. Phys. B (1)

P.-E. Bengtsson, M. Aldén, “Soot visualization strategies using laser techniques: laser-induced fluorescence in C2 from laser-vaporized soot, and laser-induced soot incandescence,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Combust. Flame (5)

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

R. C. Miake-Lye, S. J. Toner, “Laser soot-scattering imaging of a large buoyant diffusion flame,” Combust. Flame 67, 9–26 (1987).
[CrossRef]

J. H. Kent, S. J. Bastin, “Parametric effects on sooting in turbulent acetylene diffusion flames,” Combust. Flame 56, 29–42 (1984).
[CrossRef]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially-resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Combust. Sci. Technol. (1)

R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987).
[CrossRef]

J. Appl. Phys. (1)

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

J. Heat Transfer (1)

J. P. Gore, G. M. Faeth, “Structure and spectral radiation properties of turbulent acetylene/air diffusion flames,” J. Heat Transfer 110, 173–181 (1988).
[CrossRef]

Other (5)

B. F. Magnussen, “An investigation into the behavior of soot in a turbulent free jet C2H2-flame,” in the Proceedings of the Fifteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1975), pp. 1415–1425.
[CrossRef]

T. Ni, S. B. Gupta, R. J. Santoro, “Suppression of soot formation in ethene laminar diffusion flames by chemical additives,” in Twenty-Fifth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1994), pp. 585–592.
[CrossRef]

N. P. Tait, D. A. Greenhalgh, “2D soot field measurements by laser induced incandescence,” in the Proceedings of the Optical Methods and Data Processing In Heat Transfer and Fluid Flow Conference (Institution of Mechanical Engineers, London, 1992), pp. 185–193.

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D.I. diesel engine using 2-D laser-induced incandescence imaging,” Vol. SAE-910224 of the SAE Technical Papers Series (Society of Automotive Engineers, Warrendale, Pa., 1991).

J. E. Dec, “Soot distribution in a D. I. diesel engine using 2-D imaging of laser-induced incandescence, elastic scattering, and flame luminosity,” Vol. SAE-920115 of the SAE Technical Papers Series (Society of Automotive Engineers, Warrendale, Pa., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup for 2-D LII imaging.

Fig. 2
Fig. 2

Effect of laser fluence on LII for a rectangular laser intensity profile (rectangular profile). These measurements correspond to an ethene–air laminar diffusion flame at an axial position 40 mm above the fuel tube exit and a radial location exhibiting the peak soot volume fraction for that height.

Fig. 3
Fig. 3

Effect of laser fluence on the spatially resolved LII signal profile at a height 40 mm above the fuel exit of an ethene–air laminar diffusion flame: (a) laser fluence 0.15 J/cm2, (b) laser fluence 0.41 J/cm2.

Fig. 4
Fig. 4

Effect of laser fluence on the temporal profile of the LII signal: dashed curve, laser scattering signal; trace 1, laser fluence 0.072 J/cm2; trace 2, laser fluence 0.14 J/cm2; trace 3, laser fluence 0.27 J/cm2; trace 4, laser fluence 0.72 J/cm2.

Fig. 5
Fig. 5

Effect of laser fluence on the LII signal decay time (the time for the signal to decay to 1/e of peak intensity).

Fig. 6
Fig. 6

Temporal profile of a LII signal obtained in the ethene–air laminar diffusion flame at heights of 10 and 30 mm above the fuel tube exit and at the radial locations corresponding to peak soot volume fraction for these heights.

Fig. 7
Fig. 7

Effect of the delay time of the detector gate on the spatial profile of the LII signal at the 40-mm height in the ethene–air laminar diffusion flame: (a) solid curve, LII signal observed immediately after laser pulse; dashed curve, LII signal observed 180 ns after the laser pulse; (b) laser scattering–extinction data,9 where the solid curve is the soot mean particle diameter, and the dashed curve is the soot volume fraction.

Fig. 8
Fig. 8

Effect of average laser fluence on LII for a Gaussian-shaped laser beam. These measurements correspond to an ethene–air laminar diffusion flame at an axial position 40 mm above the fuel tube exit and a radial location that exhibits the peak soot volume fraction for that height.

Fig. 9
Fig. 9

Soot volume fraction (f v ) image of an ethene–air laminar diffusion flame. The maximum soot volume fraction in the image is 9.8 × 10−6.

Fig. 10
Fig. 10

Comparison of the soot volume fraction profiles obtained by LII and laser scattering–extinction.9 Solid curve, LII data; dashed curve, laser scattering–extinction data.

Fig. 11
Fig. 11

Soot volume fraction (f v ) images of turbulent ethene diffusion flames: (a) Reynolds number 4000, (b) Reynolds number 8000.

Fig. 12
Fig. 12

Soot volume fraction (f v ) image of a freely falling droplet flame.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D = D 0 exp [ - ( F - F * ) / F 0 ] ,

Metrics